Identification method for inhomogeneous fields of residual stresses
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 41-47

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical-analytical method of three-axial inhomogeneous elastic residual stress determination based on the data of the displacement optical measurement during the incremental hole drilling method is presented. The constitutive relations for the displacements as the three variable functions (in plane of the hole and along its depth) are represented by the Volterra integral operators. A method of finding the basic functions is given. The stress tensor components recovered by the proposed method are in good agreement with the well-known solution of a problem where the residual stresses are formed by bending an elastic-ideally plastic beam.
@article{VMUMM_2023_3_a6,
     author = {\`E. B. Zavoychinskaya and A. S. Plotnikov},
     title = {Identification method for inhomogeneous fields of residual stresses},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {41--47},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a6/}
}
TY  - JOUR
AU  - È. B. Zavoychinskaya
AU  - A. S. Plotnikov
TI  - Identification method for inhomogeneous fields of residual stresses
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 41
EP  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a6/
LA  - ru
ID  - VMUMM_2023_3_a6
ER  - 
%0 Journal Article
%A È. B. Zavoychinskaya
%A A. S. Plotnikov
%T Identification method for inhomogeneous fields of residual stresses
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 41-47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a6/
%G ru
%F VMUMM_2023_3_a6
È. B. Zavoychinskaya; A. S. Plotnikov. Identification method for inhomogeneous fields of residual stresses. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 41-47. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a6/