Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 35-40

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that in any neighborhood of each continuous mapping of a Cantor perfect set there is a mapping with a given topological entropy.
@article{VMUMM_2023_3_a5,
     author = {A. N. Vetokhin},
     title = {Set of definitely attained values of the topological entropy of continuous mappings of the {Cantor} set},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--40},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 35
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/
LA  - ru
ID  - VMUMM_2023_3_a5
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 35-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/
%G ru
%F VMUMM_2023_3_a5
A. N. Vetokhin. Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/