Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 35-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is established that in any neighborhood of each continuous mapping of a Cantor perfect set there is a mapping with a given topological entropy.
@article{VMUMM_2023_3_a5,
     author = {A. N. Vetokhin},
     title = {Set of definitely attained values of the topological entropy of continuous mappings of the {Cantor} set},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--40},
     year = {2023},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 35
EP  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/
LA  - ru
ID  - VMUMM_2023_3_a5
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 35-40
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/
%G ru
%F VMUMM_2023_3_a5
A. N. Vetokhin. Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/

[1] Kolmogorov A.N., “Asimptoticheskie kharakteristiki vpolne ogranichennykh metricheskikh prostranstv”, Dokl. AN SSSR, 179:3 (1956), 585–589

[2] Dinaburg E.I., “Svyaz mezhdu razlichnymi entropiinymi kharakteristikami dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 35:2 (1971), 324–366 | Zbl

[3] Misiurewicz M., “Horseshoes for mappings of the interval”, Bull. Acad. pol. sci. Ser. sci. math., astron. et phys., 27 (1979), 167–169 | MR | Zbl

[4] Vetokhin A.N., “Tipichnoe svoistvo topologicheskoi entropii nepreryvnykh otobrazhenii kompaktov”, Differents. uravneniya, 53:4 (2017), 448–453 | DOI | MR | Zbl

[5] Vetokhin A.N., “Stroenie mnozhestv tochek polunepreryvnosti topologicheskoi entropii dinamicheskikh sistem, nepreryvno zavisyaschikh ot parametra”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 4, 69–72

[6] Vetokhin A.N., “Neprinadlezhnost pervomu klassu Bera topologicheskoi entropii na prostranstve gomeomorfizmov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 5, 64–67

[7] Vetokhin A.N., “Pustota mnozhestva tochek polunepreryvnosti sverkhu topologicheskoi entropii odnogo semeistva dinamicheskikh sistem”, Differents. uravneniya, 55:8 (2019), 1152–1153 | DOI | MR | Zbl

[8] Katok A.B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, M., 1999