Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 35-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is established that in any neighborhood of each continuous mapping of a Cantor perfect set there is a mapping with a given topological entropy.
			
            
            
            
          
        
      @article{VMUMM_2023_3_a5,
     author = {A. N. Vetokhin},
     title = {Set of definitely attained values of the topological entropy of continuous mappings of the {Cantor} set},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--40},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/}
}
                      
                      
                    TY - JOUR AU - A. N. Vetokhin TI - Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 35 EP - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/ LA - ru ID - VMUMM_2023_3_a5 ER -
%0 Journal Article %A A. N. Vetokhin %T Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 35-40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/ %G ru %F VMUMM_2023_3_a5
A. N. Vetokhin. Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a5/
