Gromov–Hausdorff distance between sets of vertices of regular polygons inscribed into a circle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 23-27
Cet article a éte moissonné depuis la source Math-Net.Ru
We calculate the Gromov–Hausdorff distance between vertex sets of regular polygons endowed with the round metric. We give a full answer for the case of $n$- and $m$-gons with $m$ divisible by $n$. We also calculate all distances to $2$-gons and $3$-gons.
@article{VMUMM_2023_3_a3,
author = {T. K. Talipov},
title = {Gromov{\textendash}Hausdorff distance between sets of vertices of regular polygons inscribed into a circle},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--27},
year = {2023},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/}
}
TY - JOUR AU - T. K. Talipov TI - Gromov–Hausdorff distance between sets of vertices of regular polygons inscribed into a circle JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 23 EP - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/ LA - ru ID - VMUMM_2023_3_a3 ER -
T. K. Talipov. Gromov–Hausdorff distance between sets of vertices of regular polygons inscribed into a circle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 23-27. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/
[1] Grigorev D.S., Ivanov A.O., Tuzhilin A.A., “Rasstoyaniya Gromova–Khausdorfa do simpleksov”, Chebyshevskii sb., 20:2 (2019), 108–122 | DOI | MR | Zbl
[2] Ji Y., Tuzhilin A.A., Gromov–Hausdorff distance between segment and circle, 2021, arXiv: 2101.05762v1 | MR
[3] Lim S., Memoli F., Smith Z., The Gromov–Hausdorff distance between spheres, 2022, arXiv: 2105.00611v5
[4] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, In-t kompyut. issled., M.–Izhevsk, 2004