Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 23-27
Voir la notice de l'article provenant de la source Math-Net.Ru
We calculate the Gromov–Hausdorff distance between vertex sets of regular polygons endowed with the round metric. We give a full answer for the case of $n$- and $m$-gons with $m$ divisible by $n$. We also calculate all distances to $2$-gons and $3$-gons.
@article{VMUMM_2023_3_a3,
author = {T. K. Talipov},
title = {Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--27},
publisher = {mathdoc},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/}
}
TY - JOUR AU - T. K. Talipov TI - Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 23 EP - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/ LA - ru ID - VMUMM_2023_3_a3 ER -
%0 Journal Article %A T. K. Talipov %T Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 23-27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/ %G ru %F VMUMM_2023_3_a3
T. K. Talipov. Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 23-27. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/