Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 23-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the Gromov–Hausdorff distance between vertex sets of regular polygons endowed with the round metric. We give a full answer for the case of $n$- and $m$-gons with $m$ divisible by $n$. We also calculate all distances to $2$-gons and $3$-gons.
@article{VMUMM_2023_3_a3,
     author = {T. K. Talipov},
     title = {Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--27},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/}
}
TY  - JOUR
AU  - T. K. Talipov
TI  - Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 23
EP  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/
LA  - ru
ID  - VMUMM_2023_3_a3
ER  - 
%0 Journal Article
%A T. K. Talipov
%T Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 23-27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/
%G ru
%F VMUMM_2023_3_a3
T. K. Talipov. Gromov--Hausdorff distance between sets of vertices of regular polygons inscribed into a circle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 23-27. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a3/