Estimate for the least positive root of the harmonic function in a circle decomposed into sine series
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 15-23
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of finding the smallest positive zero of a sine series of a harmonic function in a circle, represented on the boundary of the circle as a series with monotone coefficients, is solved.
			
            
            
            
          
        
      @article{VMUMM_2023_3_a2,
     author = {T. Yu. Semenova},
     title = {Estimate for the least positive root of the harmonic function in a circle decomposed into sine series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--23},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a2/}
}
                      
                      
                    TY - JOUR AU - T. Yu. Semenova TI - Estimate for the least positive root of the harmonic function in a circle decomposed into sine series JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 15 EP - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a2/ LA - ru ID - VMUMM_2023_3_a2 ER -
%0 Journal Article %A T. Yu. Semenova %T Estimate for the least positive root of the harmonic function in a circle decomposed into sine series %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 15-23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a2/ %G ru %F VMUMM_2023_3_a2
T. Yu. Semenova. Estimate for the least positive root of the harmonic function in a circle decomposed into sine series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 15-23. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a2/
