Estimate for the least positive root of the harmonic function in a circle decomposed into sine series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 15-23

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding the smallest positive zero of a sine series of a harmonic function in a circle, represented on the boundary of the circle as a series with monotone coefficients, is solved.
@article{VMUMM_2023_3_a2,
     author = {T. Yu. Semenova},
     title = {Estimate for the least positive root of the harmonic function in a circle decomposed into sine series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--23},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a2/}
}
TY  - JOUR
AU  - T. Yu. Semenova
TI  - Estimate for the least positive root of the harmonic function in a circle decomposed into sine series
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 15
EP  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a2/
LA  - ru
ID  - VMUMM_2023_3_a2
ER  - 
%0 Journal Article
%A T. Yu. Semenova
%T Estimate for the least positive root of the harmonic function in a circle decomposed into sine series
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 15-23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a2/
%G ru
%F VMUMM_2023_3_a2
T. Yu. Semenova. Estimate for the least positive root of the harmonic function in a circle decomposed into sine series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 15-23. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a2/