A method of discontinuous displacements with consideration of crack curvature
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 67-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the development of the displacement discontinuity method for plane problems of fracture mechanics in consideration of the curvature of crack lines. In this paper, some new representations of biharmonic functions are found. This is necessary to obtain the analytical solutions of problems for an elastic plane weakened by a crack in the form of a circle arc. A numerical method is proposed on the basis of these analytical solutions. The numerical values of the stress intensity factor are compared with its known analytical value.
@article{VMUMM_2023_3_a11,
     author = {A. V. Zvyagin and D. D. Novov},
     title = {A method of discontinuous displacements with consideration of crack curvature},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     year = {2023},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a11/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - D. D. Novov
TI  - A method of discontinuous displacements with consideration of crack curvature
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 67
EP  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a11/
LA  - ru
ID  - VMUMM_2023_3_a11
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A D. D. Novov
%T A method of discontinuous displacements with consideration of crack curvature
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 67-71
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a11/
%G ru
%F VMUMM_2023_3_a11
A. V. Zvyagin; D. D. Novov. A method of discontinuous displacements with consideration of crack curvature. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a11/

[1] Krauch S., Starfild A., Metody granichnykh elementov v mekhanike tverdogo tela, Mir, M., 1987

[2] Benerdzhi P., Batterfild R., Metody granichnykh elementov v prikladnykh naukakh, Mir, M., 1984 | MR

[3] Muskhelishvili N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966 | MR

[4] Rakhmatulin Kh.A., Shemyakin E.A., Demyanov Yu.A., Zvyagin A.V., Prochnost i razrushenie pri kratkovremennykh nagruzkakh, Universitetskaya kniga; Logos, M., 2008 | MR

[5] Novatskii V., Teoriya uprugosti, Mir, M., 1975

[6] Murakami Yu., Spravochnik po koeffitsientam intensivnosti napryazhenii, Per. s angl., v 2 t., v. 1, Mir, M., 1990