@article{VMUMM_2023_3_a10,
author = {M. V. Zaicev},
title = {Maximal {PI-exponents} of finite-dimensional algebras},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {64--67},
year = {2023},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a10/}
}
M. V. Zaicev. Maximal PI-exponents of finite-dimensional algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 64-67. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a10/
[1] Bahturin Yu., Drensky V., “Graded polynomial identities of matrices”, Linear Algebra Appl., 357 (2002), 15–34 | DOI | MR | Zbl
[2] Giambruno A., Zaicev M., “Codimension growth of special simple Jordan algebras”, Trans. Amer. Math. Soc., 362 (2010), 3107–3123 | DOI | MR | Zbl
[3] Giambruno A., Zaicev M., “On codimension growth of finitely generated associative algebras”, Adv. Math., 140 (1998), 145–155 | DOI | MR | Zbl
[4] Giambruno A., Zaicev M., “Exponential codimension growth of PI-algebras: an exact estimate”, Adv. Math., 142 (1999), 221–243 | DOI | MR | Zbl
[5] Zaitsev M.V., “Tselochislennost eksponent rosta tozhdestv konechnomernykh algebr Li”, Izv. RAN. Ser. matem., 66 (2002), 23–48 | DOI | Zbl
[6] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl
[7] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Nauka, M., 1982 | MR
[8] Zaitsev M.V., Mischenko S.P., “Tozhdestva superalgebr Li s nilpotentnym kommutantom”, Algebra i logika, 47 (2008), 617–645 | MR | Zbl