$\alpha$-monotone sequences and the Lorentz theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 63-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Properties of $\alpha$-monotone sequences are studied. A relationship between $\alpha$-monotonicity and the limiting rate of change of coefficients is revealed. Operations on sequences that do not lead out of the class $M_\alpha$ are discussed. An analogue of the Lorentz theorem for trigonometric series with coefficients from the classes $M_\alpha$ for $0 \alpha 1$ is proved.
@article{VMUMM_2023_2_a7,
author = {E. D. Alferova and M. I. Dyachenko},
title = {$\alpha$-monotone sequences and the {Lorentz} theorem},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {63--67},
publisher = {mathdoc},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/}
}
TY - JOUR AU - E. D. Alferova AU - M. I. Dyachenko TI - $\alpha$-monotone sequences and the Lorentz theorem JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 63 EP - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/ LA - ru ID - VMUMM_2023_2_a7 ER -
E. D. Alferova; M. I. Dyachenko. $\alpha$-monotone sequences and the Lorentz theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/