$\alpha$-monotone sequences and the Lorentz theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 63-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of $\alpha$-monotone sequences are studied. A relationship between $\alpha$-monotonicity and the limiting rate of change of coefficients is revealed. Operations on sequences that do not lead out of the class $M_\alpha$ are discussed. An analogue of the Lorentz theorem for trigonometric series with coefficients from the classes $M_\alpha$ for $0 <\alpha <1$ is proved.
@article{VMUMM_2023_2_a7,
     author = {E. D. Alferova and M. I. Dyachenko},
     title = {$\alpha$-monotone sequences and the {Lorentz} theorem},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     year = {2023},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/}
}
TY  - JOUR
AU  - E. D. Alferova
AU  - M. I. Dyachenko
TI  - $\alpha$-monotone sequences and the Lorentz theorem
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 63
EP  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/
LA  - ru
ID  - VMUMM_2023_2_a7
ER  - 
%0 Journal Article
%A E. D. Alferova
%A M. I. Dyachenko
%T $\alpha$-monotone sequences and the Lorentz theorem
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 63-67
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/
%G ru
%F VMUMM_2023_2_a7
E. D. Alferova; M. I. Dyachenko. $\alpha$-monotone sequences and the Lorentz theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/

[1] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965

[2] Andersen A.F., “Comparison theorems in the theory of Cesaro summability”, Proc. London Math. Soc. Ser. 2, 27 (1927), 39–71 | MR

[3] Dyachenko M.I., “Trigonometricheskie ryady s obobschenno-monotonnymi koeffitsientami”, Izv. vuzov. Matematika, 1986, no. 7, 39–50 | Zbl

[4] Dyachenko M.I., “Asimptotika summ kosinus-ryadov s koeffitsientami drobnoi monotonnosti”, Matem. zametki, 110:6 (2021), 865–874 | DOI | Zbl

[5] Lorentz G.G., “Fourier-Koeffizienten und Funktionenklassen”, Math. Z., 51 (1948), 135–149 | DOI | MR | Zbl