$\alpha$-monotone sequences and the Lorentz theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 63-67
Cet article a éte moissonné depuis la source Math-Net.Ru
Properties of $\alpha$-monotone sequences are studied. A relationship between $\alpha$-monotonicity and the limiting rate of change of coefficients is revealed. Operations on sequences that do not lead out of the class $M_\alpha$ are discussed. An analogue of the Lorentz theorem for trigonometric series with coefficients from the classes $M_\alpha$ for $0 <\alpha <1$ is proved.
@article{VMUMM_2023_2_a7,
author = {E. D. Alferova and M. I. Dyachenko},
title = {$\alpha$-monotone sequences and the {Lorentz} theorem},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {63--67},
year = {2023},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/}
}
E. D. Alferova; M. I. Dyachenko. $\alpha$-monotone sequences and the Lorentz theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a7/
[1] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965
[2] Andersen A.F., “Comparison theorems in the theory of Cesaro summability”, Proc. London Math. Soc. Ser. 2, 27 (1927), 39–71 | MR
[3] Dyachenko M.I., “Trigonometricheskie ryady s obobschenno-monotonnymi koeffitsientami”, Izv. vuzov. Matematika, 1986, no. 7, 39–50 | Zbl
[4] Dyachenko M.I., “Asimptotika summ kosinus-ryadov s koeffitsientami drobnoi monotonnosti”, Matem. zametki, 110:6 (2021), 865–874 | DOI | Zbl
[5] Lorentz G.G., “Fourier-Koeffizienten und Funktionenklassen”, Math. Z., 51 (1948), 135–149 | DOI | MR | Zbl