Stress concentration tensor for a stretchable elastic isotropic plane being weaken by a grid of isotropic elliptic inclusions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 56-62
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work presents the construction of a solution to the plane doubly periodic loading problem for an infinite elastic isotropic plane with elliptical inclusions. The plane is under one of three loads: it is stretched in the direction of one of the inclusion axes or it has a pure shear at infinity. The concept of stress concentration tensor is considered and an example of its construction is shown. The solution of the problem is reduced to the search for complex functions from the boundary conditions obtained from the equality of displacements and normal forces of the matrix and inclusions using conformal mappings and integration by the Muskhelishvili method. The effect of non-central inclusions is expressed by using the small parameter method.
@article{VMUMM_2023_2_a6,
     author = {I. F. Startsev},
     title = {Stress concentration tensor for a stretchable elastic isotropic plane being weaken by a grid of isotropic elliptic inclusions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--62},
     year = {2023},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a6/}
}
TY  - JOUR
AU  - I. F. Startsev
TI  - Stress concentration tensor for a stretchable elastic isotropic plane being weaken by a grid of isotropic elliptic inclusions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 56
EP  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a6/
LA  - ru
ID  - VMUMM_2023_2_a6
ER  - 
%0 Journal Article
%A I. F. Startsev
%T Stress concentration tensor for a stretchable elastic isotropic plane being weaken by a grid of isotropic elliptic inclusions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 56-62
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a6/
%G ru
%F VMUMM_2023_2_a6
I. F. Startsev. Stress concentration tensor for a stretchable elastic isotropic plane being weaken by a grid of isotropic elliptic inclusions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 56-62. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a6/

[1] Gorbachev V.I., Mikhailov A.L., “Tenzor kontsentratsii napryazhenii dlya sluchaya N-mernogo uprugogo prostranstva so sfericheskim vklyucheniem”, Vestn. Mosk. un-ta. Matem. Mekhan., 1993, no. 2, 78–83 | Zbl

[2] Muskhelishvili N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Izd-vo AN SSSR, M., 1966 | MR

[3] Malkov V.M., Malkova Yu.V., “Deformatsiya plastiny s uprugim ellipticheskim vklyucheniem”, Vestn. SPbGU. Ser. 1, 2(60):4 (2015), 617–632 | MR

[4] Grigolyuk E.I., Filshtinskii L.A., Perforirovannye plastiny i obolochki, Nauka, M., 1970

[5] Natanzon V.Ya., “O napryazheniyakh v rastyagivaemoi plastinke, oslablennoi odinakovymi otverstiyami, raspolozhennymi v shakhmatnom poryadke”, Matem. sb., 42:5 (1935), 617–636

[6] Savin G.N., Raspredelenie napryazhenii okolo otverstii, Naukova dumka, Kiev, 1968 | MR

[7] Kosmodamianskii A.S., Ploskaya zadacha teorii uprugosti dlya plastin s otverstiyami i vystupami, Vischa shkola, Golovnoe izd-vo, Kiev, 1975

[8] Eshelby J.D., “The determination of the elastic field of an ellipsoidal inclusion and related problems”, Proc. Roy. Soc. London. Ser. A. Math. and Phys. Sci., 241:1226 (1957), 376–396 | MR | Zbl

[9] Savin G.N., Tulchii V.I., Spravochnik po kontsentratsii napryazhenii, Vischa shkola, Kiev, 1976