Motion of two touching cylinders interacting by a dry friction force
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 46-56

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerned with the motion of two contacting cylinders, there is dry friction between them. Filippov's theory of discontinuous differential equations is used to study ODE system. The forward uniqueness of the solution is proven, the phase portrait is drawn, its bifurcation is studied. These results allow us to describe the motions of the given mechanical system, in particular, to describe the seizing and permanent rotation conditions.
@article{VMUMM_2023_2_a5,
     author = {E. E. Borisenko},
     title = {Motion of two touching cylinders interacting by a dry friction force},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--56},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a5/}
}
TY  - JOUR
AU  - E. E. Borisenko
TI  - Motion of two touching cylinders interacting by a dry friction force
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 46
EP  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a5/
LA  - ru
ID  - VMUMM_2023_2_a5
ER  - 
%0 Journal Article
%A E. E. Borisenko
%T Motion of two touching cylinders interacting by a dry friction force
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 46-56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a5/
%G ru
%F VMUMM_2023_2_a5
E. E. Borisenko. Motion of two touching cylinders interacting by a dry friction force. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 46-56. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a5/