Motion of two touching cylinders interacting by a dry friction force
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 46-56
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper concerned with the motion of two contacting cylinders, there is dry friction between them. Filippov's theory of discontinuous differential equations is used to study ODE system. The forward uniqueness of the solution is proven, the phase portrait is drawn, its bifurcation is studied. These results allow us to describe the motions of the given mechanical system, in particular, to describe the seizing and permanent rotation conditions.
@article{VMUMM_2023_2_a5,
author = {E. E. Borisenko},
title = {Motion of two touching cylinders interacting by a dry friction force},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--56},
year = {2023},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a5/}
}
E. E. Borisenko. Motion of two touching cylinders interacting by a dry friction force. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 46-56. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a5/
[1] Filippov A.F., “Differentsialnye uravneniya s razryvnoi pravoi chastyu”, Matem. sb., 51(93):1 (1960), 99–128 | MR | Zbl
[2] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, Gl. redaktsiya fiz.-mat. lit., M., 1985 | MR
[3] Knyazhishche L.B., “Extremum condition and stability tests for solutions of gradient systems”, Diff. Equat., 55 (2019), 340–347 | DOI | MR | Zbl
[4] Bogaevskii I.A., “Razryvnye gradientnye differentsialnye uravneniya i traektorii v variatsionnom ischislenii”, Matem. sb., 197:12 (2006), 11–42 | DOI | MR | Zbl
[5] Aleksandrov P.S., Lektsii po analiticheskoi geometrii, popolnennye neobkhodimymi svedeniyami iz algebry, Nauka, Gl. redaktsiya fiz.-mat. lit., M., 1968 | MR