Necessary conditions for existence of an additional integral in the problem on motion of a solid body with a fixed point in the flow of particles bounded by an ellipsoid revolution surface
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 40-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of motion in a free molecular flow of particles of a rigid body with a fixed point bounded by the surface of an ellipsoid of revolution is considered. Necessary conditions for the existence of an additional analytic first integral independent of the energy integral are obtained in this problem.
@article{VMUMM_2023_2_a4,
     author = {M. M. Gadzhiev and A. S. Kuleshov},
     title = {Necessary conditions for existence of an additional integral in the problem on motion of a solid body with a fixed point in the flow of particles bounded by an ellipsoid revolution surface},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--46},
     year = {2023},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a4/}
}
TY  - JOUR
AU  - M. M. Gadzhiev
AU  - A. S. Kuleshov
TI  - Necessary conditions for existence of an additional integral in the problem on motion of a solid body with a fixed point in the flow of particles bounded by an ellipsoid revolution surface
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 40
EP  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a4/
LA  - ru
ID  - VMUMM_2023_2_a4
ER  - 
%0 Journal Article
%A M. M. Gadzhiev
%A A. S. Kuleshov
%T Necessary conditions for existence of an additional integral in the problem on motion of a solid body with a fixed point in the flow of particles bounded by an ellipsoid revolution surface
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 40-46
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a4/
%G ru
%F VMUMM_2023_2_a4
M. M. Gadzhiev; A. S. Kuleshov. Necessary conditions for existence of an additional integral in the problem on motion of a solid body with a fixed point in the flow of particles bounded by an ellipsoid revolution surface. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 40-46. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a4/

[1] Markeev A.P., Teoreticheskaya mekhanika, Nauka, M., 1990 | MR

[2] Kozlov V.V., “Nesuschestvovanie analiticheskikh integralov vblizi polozhenii ravnovesiya gamiltonovykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 1976, no. 1, 110–115 | Zbl

[3] Kozlov V.V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udmurt. gos. un-ta, Izhevsk, 1995 | MR

[4] Dullin H.R., “Melnikov's method applied to the double pendulum”, Z. Phys. B., 93 (1994), 521–528 | DOI | MR

[5] Moauro V., Negrini P., “Khaoticheskie traektorii dvoinogo matematicheskogo mayatnika”, Prikl. matem. i mekhan., 62 (1998), 892–895

[6] Ivochkin M.Yu., “Neobkhodimye usloviya suschestvovaniya dopolnitelnogo integrala v zadache o dvizhenii tyazhelogo ellipsoida na gladkoi gorizontalnoi ploskosti”, Prikl. matem. i mekhan., 75 (2009), 858–866 | MR

[7] Burov A.A., “Nesuschestvovanie dopolnitelnogo integrala v zadache o ploskom tyazhelom dvoinom mayatnike”, Prikl. matem. i mekhan., 50 (1986), 168–171 | Zbl

[8] Kozlov V.V., Onischenko D.A., “Neintegriruemost uravnenii Kirkhgofa”, Dokl. AN SSSR, 266 (1982), 1298–1300 | Zbl

[9] Onischenko D.A., “Privedenie k normalnoi forme uravnenii kanonicheskoi sistemy, zavisyaschei ot parametra”, Vestn. Mosk. un-ta. Matem. Mekhan., 1982, no. 3, 78–81

[10] Gadzhiev M.M., Kuleshov A.S., “O dvizhenii tverdogo tela s nepodvizhnoi tochkoi v potoke chastits”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 3, 58–68 | Zbl