Free oscillations of a conical shell
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 35-40
Cet article a éte moissonné depuis la source Math-Net.Ru
Free fluctuations of a conical shell of finite length are considered. This problem was formulated in the 1960s. A modern algorithm without saturation is given in this paper and specific calculations which show its high efficiency are discussed.
@article{VMUMM_2023_2_a3,
author = {S. D. Algazin and A. A. Sinitsyn},
title = {Free oscillations of a conical shell},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {35--40},
year = {2023},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a3/}
}
S. D. Algazin; A. A. Sinitsyn. Free oscillations of a conical shell. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a3/
[1] Liew K.M., Ng T.Y., Zhao X., “Free vibration analysis of conical shells via the element-free kp-Ritz method”, J. Sound Vibr., 281 (2005), 627–645 | DOI
[2] Shu C., “An efficient approach for free vibration analysis of conical shells”, Int. J. Mech. Sci., 38 (1996), 935–949 | DOI | Zbl
[3] Algazin S.D., Chislennye algoritmy bez nasyscheniya v klassicheskikh zadachakh matematicheskoi fiziki, 4-e izd., pererab., URSS, M., 2019
[4] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986
[5] Gavrikov M.B., Tayurskii A.A., Funktsionalnyi analiz i vychislitelnaya matematika, URSS, M., 2016