Constructive solution of scattering inverse problem for systems of ordinary differential equations with singularities
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 24-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inverse scattering problem for differential systems with a singularity is considered. The problem is reduced to a certain linear equation, the solvability of the equation is proved. A reconstruction formula for coefficients of the system is obtained.
@article{VMUMM_2023_2_a2,
     author = {M. Yu. Ignat'ev},
     title = {Constructive solution of scattering inverse problem for systems of ordinary differential equations with singularities},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--34},
     year = {2023},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a2/}
}
TY  - JOUR
AU  - M. Yu. Ignat'ev
TI  - Constructive solution of scattering inverse problem for systems of ordinary differential equations with singularities
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 24
EP  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a2/
LA  - ru
ID  - VMUMM_2023_2_a2
ER  - 
%0 Journal Article
%A M. Yu. Ignat'ev
%T Constructive solution of scattering inverse problem for systems of ordinary differential equations with singularities
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 24-34
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a2/
%G ru
%F VMUMM_2023_2_a2
M. Yu. Ignat'ev. Constructive solution of scattering inverse problem for systems of ordinary differential equations with singularities. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 24-34. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a2/

[1] Albeverio S., Hryniv R., Mykytyuk Ya., “Reconstruction of radial Dirac operators”, J. Math. Phys., 48 (2007) | DOI | MR

[2] Albeverio S., Hryniv R., Mykytyuk Ya., “Reconstruction of radial Dirac and Schrödinger operators from two spectra”, J. Math. Anal. and Appl., 339 (2008), 45–57 | DOI | MR | Zbl

[3] Serier F., “Inverse spectral problem for singular Ablowitz-Kaup-Newell-Segur operators on [0; 1]”, Inverse Problems, 22 (2006), 1457–1484 | DOI | MR | Zbl

[4] Gorbunov O.B., Shieh C.-T., Yurko V.A., “Dirac system with a singularity in an interior point”, Appl. Anal., 2015 | DOI | MR

[5] Yurko V.A., “On higher-order differential operators with a singular point”, Inverse Problems, 9 (1993), 495–502 | DOI | MR | Zbl

[6] Yurko V.A., “O differentsialnykh operatorakh vysshikh poryadkov s regulyarnoi osobennostyu”, Matem. sb., 186:6 (1995), 133–160 | MR | Zbl

[7] Yurko V.A., “O differentsialnykh operatorakh vysshikh poryadkov s osobennostyu vnutri intervala”, Matem. zametki, 71:1 (2002), 152–156 | DOI | MR | Zbl

[8] Fedoseev A.E., “Inverse problems for differential equations on the half-line having a singularity in an interior point”, Tamkang J. Math., 42 (2011), 343–354 | DOI | MR | Zbl

[9] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[10] Ignatyev M., “Spectral analysis for differential systems with a singularity”, Results Math., 71 (2017), 1531–1555 | DOI | MR | Zbl

[11] Ignatiev M., “On Weyl-type solutions of differential systems with a singularity. The case of discontinuous potential”, Math. Notes, 108:6 (2020), 814–826 | DOI | MR | Zbl

[12] Ignatiev M.Yu., “Reconstruction formula for differential systems with a singularity (Ignatev M.Yu. Formula vosstanovleniya dlya sistem differentsialnykh uravnenii s osobennostyu)”, Izv. Saratov. un-ta. Nov. ser. Ser. Matem. Mekhan. Inform., 21:3 (2021), 282–293 | MR | Zbl

[13] Sedletskii A.M., Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005