Comparison of a pure greedy algorithm with a pure greedy one in a pair of dictionaries
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we compare the standard Pure Greedy Algorithm (PGA) with its modification — PGA in a pair of dictionaries. We show that PGA in a pair of dictionaries converges in certain cases in a finite number of steps, while the standard PGA for each individual dictionary has non-zero remainders at each step; at the same time, in certain cases the opposite holds true. Similarly, for the comparison of PGA in a pair of dictionaries vs standard PGA in a union of these dictionaries both situations are possible. For the convergence rate, we also prove that in certain cases PGA in a pair of dictionaries can be faster, and in certain cases can be slower than the standard PGA in individual dictionaries.
@article{VMUMM_2023_2_a0,
author = {A. S. Orlova},
title = {Comparison of a pure greedy algorithm with a pure greedy one in a pair of dictionaries},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--11},
year = {2023},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a0/}
}
A. S. Orlova. Comparison of a pure greedy algorithm with a pure greedy one in a pair of dictionaries. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2023), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2023_2_a0/
[1] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2012 | MR
[2] DeVore R.A., Temlyakov V.N., “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:1 (1996), 173–187 | DOI | MR | Zbl
[3] Lukashenko T.P., “O svoistvakh ortorekursivnykh razlozhenii po neortogonalnym sistemam”, Vestn. Mosk. un-ta. Matem. Mekhan., 2001, no. 1, 6–10 | Zbl
[4] Borodin P.A., Kopecka E., Weak limits of consecutive projections and of greedy steps, arXiv: 2112.05094 [math.FA]
[5] Temlyakov V., Greedy Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2011 | MR | Zbl