Criterion of Lyapunov reducibility of a linear autonomous differential system to a linear autonomous equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 55-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a unified criterion for the reducibility of a linear homogeneous differential system with constant coefficients to a linear homogeneous differential equation with constant coefficients by means of both Lyapunov and periodic transformations. The resulting necessary and sufficient condition on a system is formulated in terms of properties of the Jordan normal form of its matrix.
@article{VMUMM_2023_1_a9,
     author = {I. N. Sergeev and K. V. Umansky},
     title = {Criterion of {Lyapunov} reducibility of a linear autonomous differential system to a linear autonomous equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--59},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a9/}
}
TY  - JOUR
AU  - I. N. Sergeev
AU  - K. V. Umansky
TI  - Criterion of Lyapunov reducibility of a linear autonomous differential system to a linear autonomous equation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 55
EP  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a9/
LA  - ru
ID  - VMUMM_2023_1_a9
ER  - 
%0 Journal Article
%A I. N. Sergeev
%A K. V. Umansky
%T Criterion of Lyapunov reducibility of a linear autonomous differential system to a linear autonomous equation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 55-59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a9/
%G ru
%F VMUMM_2023_1_a9
I. N. Sergeev; K. V. Umansky. Criterion of Lyapunov reducibility of a linear autonomous differential system to a linear autonomous equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 55-59. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a9/