Criterion of Lyapunov reducibility of a linear autonomous differential system to a linear autonomous equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 55-59
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish a unified criterion for the reducibility of a linear homogeneous differential system with constant coefficients to a linear homogeneous differential equation with constant coefficients by means of both Lyapunov and periodic transformations. The resulting necessary and sufficient condition on a system is formulated in terms of properties of the Jordan normal form of its matrix.
@article{VMUMM_2023_1_a9,
author = {I. N. Sergeev and K. V. Umansky},
title = {Criterion of {Lyapunov} reducibility of a linear autonomous differential system to a linear autonomous equation},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {55--59},
publisher = {mathdoc},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a9/}
}
TY - JOUR AU - I. N. Sergeev AU - K. V. Umansky TI - Criterion of Lyapunov reducibility of a linear autonomous differential system to a linear autonomous equation JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 55 EP - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a9/ LA - ru ID - VMUMM_2023_1_a9 ER -
%0 Journal Article %A I. N. Sergeev %A K. V. Umansky %T Criterion of Lyapunov reducibility of a linear autonomous differential system to a linear autonomous equation %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 55-59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a9/ %G ru %F VMUMM_2023_1_a9
I. N. Sergeev; K. V. Umansky. Criterion of Lyapunov reducibility of a linear autonomous differential system to a linear autonomous equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 55-59. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a9/