Sets in $\mathbb {R}^n$ monotone path-connected with respect to some norm
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 53-55
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions on a path-connected set $M$ in $\mathbb {R}^n$ that are necessary and sufficient for $M$ to be monotone path-connected with respect to some norm are obtained.
@article{VMUMM_2023_1_a8,
     author = {E. A. Savinova},
     title = {Sets in $\mathbb {R}^n$ monotone path-connected with respect to some norm},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--55},
     year = {2023},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a8/}
}
TY  - JOUR
AU  - E. A. Savinova
TI  - Sets in $\mathbb {R}^n$ monotone path-connected with respect to some norm
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 53
EP  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a8/
LA  - ru
ID  - VMUMM_2023_1_a8
ER  - 
%0 Journal Article
%A E. A. Savinova
%T Sets in $\mathbb {R}^n$ monotone path-connected with respect to some norm
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 53-55
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a8/
%G ru
%F VMUMM_2023_1_a8
E. A. Savinova. Sets in $\mathbb {R}^n$ monotone path-connected with respect to some norm. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 53-55. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a8/

[1] Alimov A.R., “Svyaznost solnts v prostranstve $c_0$”, Izv. RAN. Ser. matem., 69:4 (2005), 3–18

[2] Tsarkov I.G., “Svoistva monotonno lineino svyaznykh mnozhestv”, Izv. RAN. Ser. matem., 85:2 (2021), 142–171

[3] Alimov A.R., “Monotone path-connectedness of strict suns”, Lobachevskii J. Math., 43:3 (2022), 519–527

[4] Brosowski B., Deutsch F., Lambert J., Morris P.D., “Chebyshev sets which are not suns”, Math. Ann., 212:2 (1974), 89–101

[5] Shklyaev K.S., “Ploskie mnozhestva, chebyshevskie v kakoi-libo norme”, Vestn. Mosk. un-ta. Matem. Mekhan., 2021, no. 2, 35–39

[6] Alimov A.R., Tsarkov I.G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, Uspekhi matem. nauk, 71:1(427) (2016), 3–84