Angular boundary limits for normal subharmonic functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 49-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper continues the study of boundary properties of normal subharmonic functions defined in the unit circle $D$. Theorems are obtained on the existence of angular boundary limits for normal subharmonic functions almost everywhere on the unit circle $D$.
@article{VMUMM_2023_1_a7,
     author = {S. L. Berberian and R. V. Dallakyan},
     title = {Angular boundary limits for normal subharmonic functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {49--53},
     year = {2023},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a7/}
}
TY  - JOUR
AU  - S. L. Berberian
AU  - R. V. Dallakyan
TI  - Angular boundary limits for normal subharmonic functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 49
EP  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a7/
LA  - ru
ID  - VMUMM_2023_1_a7
ER  - 
%0 Journal Article
%A S. L. Berberian
%A R. V. Dallakyan
%T Angular boundary limits for normal subharmonic functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 49-53
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a7/
%G ru
%F VMUMM_2023_1_a7
S. L. Berberian; R. V. Dallakyan. Angular boundary limits for normal subharmonic functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 49-53. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a7/

[1] Berberyan S.L., “Ob ogranichennosti normalnykh garmonicheskikh funktsii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 2, 57–61

[2] Nosiro K., Predelnye mnozhestva, IL, M., 1963

[3] Rung D., “Asymptotic values of normal subharmonic functions”, Math. Z., 84:1 (1964), 9–15

[4] Littlewood J., “On a theorem of Fatou”, J. London Math. Soc., 27 (1927), 172–176

[5] Privalov I.I., Subgarmonicheskie funktsii, Nauchno-tekhn. izd-vo NKTP SSSR, M.–L., 1937

[6] Tsuji M., “Littlewood theorem on subharmonic functions in a unit circle”, Comment. Math. Univ. St. Pauli, 5:7 (1956), 3–16

[7] Meek J., “Subharmonic versions of Fatous theorem”, Proc. Amer. Math. Soc., 30:2 (1971), 313–317

[8] Berberyan S.L., “O granichnykh svoistvakh subgarmonicheskikh funktsii, porozhdayuschikh normalnye semeistva na podgruppakh avtomorfizmov edinichnogo kruga”, Izv. AN ArmSSR, 15:4 (1980), 395–402

[9] Berberyan S.L., “O granichnykh osobennostyakh normalnykh subgarmonicheskikh funktsii”, Mathematica Montisnigri, 18–19 (2005–2006), 5–14

[10] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950

[11] Bagemihl F., Seidel W., “Sequential and continuous limits of meromorphic functions”, Ann. Acad. Sci. Fenn. Math. Ser. AI, 1960, no. 280, 1–17

[12] Lappan P., “Fatou points of harmonic normal functions and uniformly normal functions”, Math. Z., 102:3 (1967), 110–114