Angular boundary limits for normal subharmonic functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 49-53

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the study of boundary properties of normal subharmonic functions defined in the unit circle $D$. Theorems are obtained on the existence of angular boundary limits for normal subharmonic functions almost everywhere on the unit circle $D$.
@article{VMUMM_2023_1_a7,
     author = {S. L. Berberian and R. V. Dallakyan},
     title = {Angular boundary limits for normal subharmonic functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {49--53},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a7/}
}
TY  - JOUR
AU  - S. L. Berberian
AU  - R. V. Dallakyan
TI  - Angular boundary limits for normal subharmonic functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 49
EP  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a7/
LA  - ru
ID  - VMUMM_2023_1_a7
ER  - 
%0 Journal Article
%A S. L. Berberian
%A R. V. Dallakyan
%T Angular boundary limits for normal subharmonic functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 49-53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a7/
%G ru
%F VMUMM_2023_1_a7
S. L. Berberian; R. V. Dallakyan. Angular boundary limits for normal subharmonic functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 49-53. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a7/