Numerical modeling of branched cracks
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 44-48

Voir la notice de l'article provenant de la source Math-Net.Ru

With the growth of various microdefects in bodies, complex systems of cracks of arbitrary configuration can be generated. This paper presents a technique for numerical simulation of complex branched cracks, which makes it possible to analyze such systems. Using the method proposed by the authors, it is possible to find the stress and displacement fields as well as the stress intensity factors, the analysis of which leads to the conclusion about the influence of the considered configuration on the crack stability. The paper also contains the comparison with the results of other authors in the problem of a two-link crack.
@article{VMUMM_2023_1_a6,
     author = {A. V. Zvyagin and A. S. Udalov},
     title = {Numerical modeling of branched cracks},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {44--48},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a6/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - A. S. Udalov
TI  - Numerical modeling of branched cracks
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 44
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a6/
LA  - ru
ID  - VMUMM_2023_1_a6
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A A. S. Udalov
%T Numerical modeling of branched cracks
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 44-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a6/
%G ru
%F VMUMM_2023_1_a6
A. V. Zvyagin; A. S. Udalov. Numerical modeling of branched cracks. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 44-48. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a6/