Calculation of the Gromov–Hausdorff distance using the Borsuk number
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 33-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to demonstrate relations between Gromov–Hausdorff distance properties and the Borsuk Conjecture. The Borsuk number of a given bounded metric space $X$ is the infimum of cardinal numbers $n$ such that $X$ can be partitioned into $n$ smaller parts (in the sense of diameter). An exact formula for the Gromov–Hausdorff distance between bounded metric spaces is derived under the assumptions that the diameter and the cardinality of one space is less than the diameter and the Borsuk number of the other one, respectively. Using P. Bacon equivalence results between Lusternik–Schnirelmann and Borsuk problems, several corollaries are obtained.
@article{VMUMM_2023_1_a4,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Calculation of the {Gromov{\textendash}Hausdorff} distance using the {Borsuk} number},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {33--38},
     year = {2023},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a4/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Calculation of the Gromov–Hausdorff distance using the Borsuk number
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 33
EP  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a4/
LA  - ru
ID  - VMUMM_2023_1_a4
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Calculation of the Gromov–Hausdorff distance using the Borsuk number
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 33-38
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a4/
%G ru
%F VMUMM_2023_1_a4
A. O. Ivanov; A. A. Tuzhilin. Calculation of the Gromov–Hausdorff distance using the Borsuk number. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 33-38. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a4/

[1] Illanes A., Nadler S., Hyperspaces. Fundamentals and Recent Advances, Marcel Dekker Inc., New York–Basel, 1999

[2] Hausdorff F., Grundzüge der Mengenlehre, Veit, Leipzig, 1914; reprinted Chelsea, 1949

[3] Burago D., Burago Yu., Ivanov S., A Course in Metric Geometry, Graduate Studies in Mathematics, 33, AMS, Providence, RI, 2001

[4] Ivanov A.O., Tuzhilin A.A., Geometriya rasstoyanii Khausdorfa i Gromova–Khausdorfa: sluchai kompaktov, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU, M., 2017

[5] Edwards D., The Structure of Superspace, Studies in Topology, Academic Press, NY–San Francisco–London, 1975, 121–133

[6] Gromov M., “Groups of Polynomial Growth and Expanding Maps”, Publications Mathematiques I.H.E.S., 53, I.H.E.S., Paris, 1981, 53–73

[7] Moscow University Mathematics Bulletin, 73:5 (2018), 154–160

[8] Moscow University Mathematics Bulletin, 76:4 (2018), 182–189

[9] Ivanov A.O., Tuzhilin A.A., “Gromov–Hausdorff distances to simplexes and some applications to discrete optimisation”, Chebyvshevskii sb., 21:2 (2020), 69–189

[10] Bacon P., “Equivalent formulations of the Borsuk–Ulam theorem”, Canad. J. Math., 18 (1966), 492–502

[11] Lyusternik L.A., Shnirelman L.G., Topologicheskie metody v variatsionnykh zadachakh, Issledovatelskii institut matematiki i mekhaniki pri 1-m MGU, M., 1930

[12] Borsuk K., “Über die Zerlegung einer $n$-dimensionalen Vollkugel in $n$-Mengen”, V Int. Math. Kongress (Zürich, 1932), 192

[13] Borsuk K., “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190

[14] Hadwiger H., “Überdeckung einer Menge durch Mengen kleineren Durchmessers”, Comment. Math. Helv., 18:1 (1945), 73–75

[15] Hadwiger H., “Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers”, Comment. Math. Helv., 19 (1946), 72–73

[16] Kahn J., Kalai G., “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc., 29:1 (1993), 60–62

[17] Raigorodskii A.M., “Around Borsuk's hypothesis”, J. Math. Sci., 154:4 (2008), 604–623

[18] Bondarenko A.V., On Borsuk's conjecture for two-distance sets, 2013, arXiv: 1305.2584

[19] Jenrich T., A $64$-dimensional two-distance counterexample to Borsuk's conjecture, 2013, arXiv: 1308.0206

[20] Grigorev D.S., Ivanov A.O., Tuzhilin A.A., “Rasstoyanie Gromova–Khausdorfa do simpleksov”, Chebyshevskii sb., 20:2 (2019), 100–114, arXiv: 1906.09644

[21] Musin O.R., Volovikov A.Yu., Borsuk–Ulam type spaces, 2015, arXiv: 1507.08872