Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 25-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study degenerate singularities of the well-known multiparametric family of integrable Zhukovsky cases of rigid body dynamics, i.e., Euler tops with added constant gyrostatic moment. For an axisymmetric rigid body and systems close to it, it is proved that degenerate local and semilocal singularities are parabolic and cuspidal singularities, respectively, for all values of the set of system parameters, excluding some hypersurfaces. It was checked that these singularities belonging to the preimage of the cusp of the bifurcation curve satisfy the parabolicity criterion of A. V. Bolsinov, L. Guglielmi, and E. A. Kudryavtseva. Therefore, they are structurally stable for small perturbations of the system in the class of integrable systems, in particular, for a small change in the principal moments of inertia, the components of the gyrostatic moment, and the values of the area integral.
@article{VMUMM_2023_1_a3,
     author = {V. A. Kibkalo},
     title = {Parabolicity of degenerate singularities in axisymmetric {Euler} systems with a gyrostat},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--32},
     year = {2023},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a3/}
}
TY  - JOUR
AU  - V. A. Kibkalo
TI  - Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 25
EP  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a3/
LA  - ru
ID  - VMUMM_2023_1_a3
ER  - 
%0 Journal Article
%A V. A. Kibkalo
%T Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 25-32
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a3/
%G ru
%F VMUMM_2023_1_a3
V. A. Kibkalo. Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 25-32. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a3/

[1] Smale S., “Topology and Mechanics, 1”, Invent. Math., 10:4 (1970), 305–331

[2] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999

[3] Kharlamov M.P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo Leningrad. un-ta, L., 1988

[4] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075

[5] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii nekotorykh integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307

[6] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51

[7] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575

[8] Bolsinov A.V., Matveev S.V., Fomenko A.T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, Uspekhi matem. nauk, 45:2 (1990), 49–77

[9] Oshemkov A.A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, Amer. Math. Soc., Providence, 1991, 67–146

[10] Bolsinov A.V., Rikhter P.Kh., Fomenko A.T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42

[11] Ryabov P.E., “Bifurcations of first integrals in the Sokolov case”, Theor. Math. Phys., 134:2 (2003), 181–197

[12] Morozov P.V., “Topologiya sloenii Liuvillya sluchaev integriruemosti Steklova i Sokolova uravnenii Kirkhgofa”, Matem. sb, 195:3 (2004), 69–114

[13] Morozov P.V., “Vychislenie invariantov Fomenko–Tsishanga v integriruemom sluchae Kovalevskoi–Yakhi”, Matem. sb., 198:8 (2007), 59–82

[14] Slavina N.S., “Topologicheskaya klassifikatsiya sistem tipa Kovalevskoi–Yakhi”, Matem. sb., 205:1 (2014), 105–160

[15] Khagigatdust G., Oshemkov A.A., “Topologiya sloeniya Liuvillya dlya integriruemogo sluchaya Sokolova na algebre Li so(4)”, Matem. sb., 200:6 (2009), 119–142

[16] Kibkalo V.A., “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sbornik Math., 210:5 (2019), 625–662

[17] Kibkalo V., “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(3, 1)”, Topol. and its Appl., 275 (2020), 107028

[18] Fokicheva V.V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176

[19] Fokicheva V.V., Fomenko A.T., “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684

[20] Vedyushkina (Fokicheva) V.V., Fomenko A.T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67

[21] Fomenko A.T., Vedyushkina V.V., “Billiards and integrability in geometry and physics. New scope and new potential”, Mosc. Univ. Math. Bull., 74:3 (2019), 98–107

[22] Eliasson L.H., “Normal forms for Hamiltonian systems with Poisson commuting integrals — elliptic case”, Comment. math. helv., 65 (1990), 4–35

[23] Zung N.T., “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215

[24] Bolsinov A.V., Guglielmi L., Kudryavtseva E.A., “Symplectic invariants for parabolic orbits and cusp singularities of integrable systems with two degrees of freedom”, Phil. Trans. Roy. Soc. A: Math., Phys., Engin. Sci., 376:2131 (2018), 20170424

[25] Efstathiou K., Giacobbe A., “The topology associated to cusp singular points”, Nonlinearity, 25:12 (2012), 3409–3422

[26] Kudryavtseva E.A., “Hidden toric symmetry and structural stability of singularities in integrable systems”, Europ. J. Math., 8 (2022), 1487–1549

[27] Yehia H.M., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Communs., 13:3 (1986), 169–172

[28] Zhukovskii N.E., “O dvizhenii tverdogo tela, imeyuschego polosti, napolnennye odnorodnoi kapelnoi zhidkostyu”, Sobr. soch., v. 2, M.–L., 1949, 152–309