New properties of topological spaces generalizing extreme non-connectivity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 19-25
Voir la notice de l'article provenant de la source Math-Net.Ru
New classes $R_1$, $R_2$, $R_3$ of topological spaces generalizing the class of $F$-spaces are introduced. It is proved that all homogeneous compact subspaces of spaces in these classes and of some of their products are finite. Results on the Rudin–Keisler comparability of ultrafilters along which distinct sequences converge to the same point in $R_2$- and $R_3$-spaces are obtained.
@article{VMUMM_2023_1_a2,
author = {A. Yu. Groznova and O. V. Sipacheva},
title = {New properties of topological spaces generalizing extreme non-connectivity},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {19--25},
publisher = {mathdoc},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a2/}
}
TY - JOUR AU - A. Yu. Groznova AU - O. V. Sipacheva TI - New properties of topological spaces generalizing extreme non-connectivity JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 19 EP - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a2/ LA - ru ID - VMUMM_2023_1_a2 ER -
%0 Journal Article %A A. Yu. Groznova %A O. V. Sipacheva %T New properties of topological spaces generalizing extreme non-connectivity %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 19-25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a2/ %G ru %F VMUMM_2023_1_a2
A. Yu. Groznova; O. V. Sipacheva. New properties of topological spaces generalizing extreme non-connectivity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 19-25. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a2/