An unsuspended description of the $E$-theory category
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An unsuspended picture of the $E$-theory is obtained in the paper. In this picture, morphisms are given in terms of good enough endofunctors of $C^*$-algebras for which we construct a categorical formalism.
@article{VMUMM_2023_1_a0,
     author = {G. S. Makeev},
     title = {An unsuspended description of the $E$-theory category},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--14},
     year = {2023},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a0/}
}
TY  - JOUR
AU  - G. S. Makeev
TI  - An unsuspended description of the $E$-theory category
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 3
EP  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a0/
LA  - ru
ID  - VMUMM_2023_1_a0
ER  - 
%0 Journal Article
%A G. S. Makeev
%T An unsuspended description of the $E$-theory category
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 3-14
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a0/
%G ru
%F VMUMM_2023_1_a0
G. S. Makeev. An unsuspended description of the $E$-theory category. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 3-14. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a0/

[1] Connes A., Higson N., “Déformations, morphismes asymptotiques et K-théorie bivariante”, C.r. Acad. sci. Paris. Sér. I. Math., 311:2 (1990), 101–106 | MR

[2] Kasparov G.G., “Operatornyi K-funktor i rasshireniya $C^*$-algebr”, Izv. RAN. Ser. matem., 44:3 (1980), 571–636 | MR

[3] Guentner E., Higson N., Trout J., “Equivariant E-theory for $C^*$-algebras”, Mem. Amer. Math. Soc., 148, no. 703, 2000, 1–83 | MR

[4] Dadarlat M., Loring T.A., “K-homology, asymptotic representations, and unsuspended E-theory”, J. Funct. Anal., 126:2 (1994), 367–383 | MR

[5] Manuilov V.M., “A KK-like picture for $E$-theory of $C^*$-algebras”, Stud. Math., 252, no. 3, 2017, 105–129 | MR

[6] Manuilov V.M., Thomsen K., “Extensions of $C^*$-algebras and translation invariant asymptotic homomorphisms”, Math. Scand, 100:1 (2007), 131–160 | MR

[7] Makeev G.S., “Esche odno opisanie funktora Konna–Khigsona”, Matem. zametki, 107:3 (2020), 561–574 | MR

[8] Jensen K.K., Thomsen K., Elements of $KK$-theory, Birkhäuser, Boston, 1991 | MR

[9] McLane S., Categories for the working mathematician, Springer, N.Y., 1998 | MR