Weighted systems of framed chord diagrams corresponding to Lie algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 60-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of Bar-Natan of weight systems induced by Lie algebra representations is generalized in the paper to the case of framed chord diagrams.
@article{VMUMM_2022_6_a8,
     author = {D. P. Ilyutko and I. M. Nikonov},
     title = {Weighted systems of framed chord diagrams corresponding to {Lie} algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--64},
     year = {2022},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a8/}
}
TY  - JOUR
AU  - D. P. Ilyutko
AU  - I. M. Nikonov
TI  - Weighted systems of framed chord diagrams corresponding to Lie algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 60
EP  - 64
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a8/
LA  - ru
ID  - VMUMM_2022_6_a8
ER  - 
%0 Journal Article
%A D. P. Ilyutko
%A I. M. Nikonov
%T Weighted systems of framed chord diagrams corresponding to Lie algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 60-64
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a8/
%G ru
%F VMUMM_2022_6_a8
D. P. Ilyutko; I. M. Nikonov. Weighted systems of framed chord diagrams corresponding to Lie algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 60-64. http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a8/

[1] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR

[2] Chmutov S. V., Duzhin S., Mostovoy J., Introduction to Vassiliev knot invariants, Cambridge University Press, Cambridge, 2012 | MR

[3] Arnold V. I., “Topological invariants of plane curves and caustics”, Univ. Lect. Ser. 5, 1994, Amer. Math. Soc., Providence, RI | DOI | MR

[4] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Singularities and Bifurcations, Adv. Sov. Math., 21, Amer. Math. Soc., Providence, RI, 1994, 33–91 | MR

[5] Lando S. K., “$J$-invarianty ornamentov i osnaschennye khordovye diagrammy”, Funkts. analiz i ego pril., 40:1 (2006), 1–13 | MR

[6] Goryunov V. V., “Finite order invariants of framed knots in a solid torus and in Arnold's $(J+)$-theory of plane curves”, Geometry and Physics, Lect. Notes Pure and Appl. Math., 184, eds. J.E. Andersen, J. Dupont, H. Pedersen, A. Swann, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 1997, 549–556 | MR

[7] Ilyutko D. P., Manturov V. O., “A parity map of framed chord diagrams”, J. Knot Theory and Its Ramifications, 24:13 (2015), 1541006, 15 pp. | DOI | MR

[8] Karev M., “The space of framed chord diagrams as a Hopf module”, J. Knot Theory and Its Ramifications, 24:3 (2015), 1550014, 17 pp. | DOI | MR