Dynamic tension of a sheet made of rigid-plastic material
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 51-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stress-strain state arising under dynamic stretching of a homogeneous sheet of an incompressible ideally rigid–plastic material, which obeys the Mises–Hencky criterion, is studied. The lateral boundary is stress–free and the longitudinal velocities are given at the ends. The possibility of thickening or thinning of the section along the length of the sheet is taken into account, which simulates necking and further development of the neck. Two characteristic stretching regimes are revealed: one of them depends on the velocity at which the end sections move away from each other and the other one depends on their acceleration. For the second regime, the asymptotic integration-based analysis allows one to find the stress–strain state parameters approximately.
@article{VMUMM_2022_6_a7,
     author = {I. M. Tsvetkov},
     title = {Dynamic tension of a sheet made of rigid-plastic material},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--59},
     year = {2022},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a7/}
}
TY  - JOUR
AU  - I. M. Tsvetkov
TI  - Dynamic tension of a sheet made of rigid-plastic material
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 51
EP  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a7/
LA  - ru
ID  - VMUMM_2022_6_a7
ER  - 
%0 Journal Article
%A I. M. Tsvetkov
%T Dynamic tension of a sheet made of rigid-plastic material
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 51-59
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a7/
%G ru
%F VMUMM_2022_6_a7
I. M. Tsvetkov. Dynamic tension of a sheet made of rigid-plastic material. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 51-59. http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a7/

[1] Ilyushin A. A., Trudy, v. 4, Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniya, Fizmatlit, M., 2009

[2] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001

[3] Annin B. D., Bytev V. O., Senashov S. I., Gruppovye svoistva uravnenii uprugosti i plastichnosti, Nauka, Novosibirsk, 1985 | MR

[4] Georgievskii D. V., “Asimptoticheskie razlozheniya i vozmozhnosti otkaza ot gipotez v zadache Prandtlya”, Izv. RAN. Mekhan. tverdogo tela, 2009, no. 1, 83–89

[5] Georgievskii D. V., Müller W. H., Abali B. E., “Thin-layer inertial effects in plasticity and dynamics in the Prandtl problem”, Z. Angew. Math. und Mech., 99:12 (2019), 1–11 | DOI | MR

[6] Georgievskii D. V., “Dinamicheskie rezhimy rastyazheniya sterzhnya iz idealno zhestkoplasticheskogo materiala”, Prikl. mekhan. i tekhn. fiz., 62:5 (2021), 119–130

[7] Bazhenov V. G., Osetrov S. L., Osetrov D. L., “Analiz zakonomernostei rastyazheniya uprugoplasticheskikh obraztsov i obrazovaniya sheiki s uchetom kraevykh effektov”, Prikl. mekhan. i tekhn. fiz., 59:4 (2018), 133–140

[8] Osintsev A. V., Plotnikov A. S., Morozov E. M., Lubkova E. Yu., “K voprosu o meste obrazovaniya sheiki pri rastyazhenii tsilindricheskikh obraztsov”, Pisma o materialakh, 7:3 (2017), 260–265

[9] Shahbeyk S., Rahiminejad D., Petrinic N., “Local solution of the stress and strain fields in the necking section of cylindrical bars under uniaxial tension”, Europ. J. Mech. A/Solids, 29:2 (2010), 230–241 | DOI

[10] Marvi-Mashhadi M., Rodriguez-Martinez J. A., “Multiple necking patterns in elasto-plastic rings subjected to rapid radial expansion: The effect of random distributions of geometric imperfections”, Int. J. Impact Engng., 144 (2020), 103661 | DOI

[11] El Ma{\"i} S., Mercier S., Petit J., Molinari A., “An extension of the linear stability analysis for the prediction of multiple necking during dynamic extension of round bar”, Int. J. Solids and Struct., 51:21–22 (2014), 3491–3507

[12] Introduction To Perturbation Techniques, Wiley, N. Y., Nayfeh A. H. | MR