On the instability with probability one of equilibrium of ideal incompressible liquid situated in a vertical cylinder under its random coaxial vibration
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 32-38

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns with the equilibrium of the ideal incompressible liquid situated in a moving cylindrical vertical vessel. It is proved that the equilibrium is unstable with probability one if the vessel movement is defined as the vertical random vibration. Random vibration is simulated by stationary Markov chain.
@article{VMUMM_2022_6_a4,
     author = {I. L. Antonov},
     title = {On the instability with probability one of equilibrium of ideal incompressible liquid situated in a vertical cylinder under its random coaxial vibration},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {32--38},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a4/}
}
TY  - JOUR
AU  - I. L. Antonov
TI  - On the instability with probability one of equilibrium of ideal incompressible liquid situated in a vertical cylinder under its random coaxial vibration
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 32
EP  - 38
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a4/
LA  - ru
ID  - VMUMM_2022_6_a4
ER  - 
%0 Journal Article
%A I. L. Antonov
%T On the instability with probability one of equilibrium of ideal incompressible liquid situated in a vertical cylinder under its random coaxial vibration
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 32-38
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a4/
%G ru
%F VMUMM_2022_6_a4
I. L. Antonov. On the instability with probability one of equilibrium of ideal incompressible liquid situated in a vertical cylinder under its random coaxial vibration. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 32-38. http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a4/