@article{VMUMM_2022_6_a3,
author = {G. V. Belozerov},
title = {Topology of $5$-surfaces of a {3D} billiard inside a triaxial ellipsoid with {Hooke's} potential},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {21--31},
year = {2022},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/}
}
TY - JOUR AU - G. V. Belozerov TI - Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 21 EP - 31 IS - 6 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/ LA - ru ID - VMUMM_2022_6_a3 ER -
G. V. Belozerov. Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 21-31. http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/
[1] Smale S., “Topology and mechanics. I”, Invent. math., 10:4 (1970), 305–331 | DOI | MR
[2] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR
[3] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii nekotorykh integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR
[4] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575
[5] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, Monografiya, v. 1, 2, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR
[6] Oshemkov A. A., “Fomenko invariants for the main integrable cases of rigid body motion equations”, Adv. Sov. Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR
[7] Bolsinov A. V., Rikhter P., Fomenko A. T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42
[8] Fomenko A. T., Vedyushkina V. V., “Bilyardy i integriruemost v geometrii i fizike. Novyi vzglyad i novye vozmozhnosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 3, 15–25
[9] Vedyushkina V. V., Fomenko A. T., Kharcheva I. S., “Modelirovanie nevyrozhdennykh bifurkatsii zamykanii reshenii integriruemykh sistem s dvumya stepenyami svobody integriruemymi topologicheskimi billiardami”, Dokl. RAN, 479:6 (2018), 607–610 | MR
[10] Vedyushkina V. V., Kibkalo V. A., “Realizatsiya bilyardami chislovogo invarianta rassloeniya Zeiferta integriruemykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 4, 22–28 | MR
[11] Kibkalo V. A., Fomenko A. T., Kharcheva I. S., “Realizatsiya integriruemykh gamiltonovykh sistem bilyardnymi knizhkami”, Tr. Mosk. matem. o-va, 82, no. 1, 2021, 49–78 | MR
[12] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | MR
[13] Vedyushkina V. V., “Invarianty Fomenko–Tsishanga nevypuklykh topologicheskikh billiardov”, Matem. sb., 210:3 (2019), 17–74 | MR
[14] Vedyushkina V. V., Kharcheva I. S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | MR
[15] Fomenko A. T., Vedyushkina V. V., Zav'yalov V. N., “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55 | DOI | MR
[16] Vedyushkina V. V., Fomenko A. T., “Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases”, Dokl. Math., 103:1 (2021), 1–4 | DOI | MR
[17] Fomenko A. T., Vedyushkina V. V., “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332 | DOI | MR
[18] Belozerov G. V., “Topologicheskaya klassifikatsiya integriruemykh geodezicheskikh billiardov na kvadrikakh v trekhmernom evklidovom prostranstve”, Matem. sb., 211:11 (2020), 3–40 | MR
[19] Vedyushkina (Fokicheva) V.V., Fomenko A. T., “Integriruemye geodezicheskie potoki na orientiruemykh dvumernykh poverkhnostyakh i topologicheskie billiardy”, Izv. RAN. Ser. matem., 83:6 (2019), 63–103 | MR
[20] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010
[21] Belozerov G. V., “Topologicheskaya klassifikatsiya billiardov v trekhmernom evklidovom prostranstve, ogranichennykh sofokusnymi kvadrikami”, Matem. sb., 213:2 (2022), 3–36 | MR
[22] Zung N. T., “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compos. Math., 101:2 (1996), 179–215 | MR
[23] Fomenko A. T., Kibkalo V. A., “Saddle Singularities in Integrable Hamiltonian Systems: Examples and Algorithms”, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, Understanding Complex Systems, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer, Cham, 2021, 1–24 | MR
[24] Kobtsev I. F., “Ellipticheskii billiard v pole potentsialnykh sil: klassifikatsiya dvizhenii, topologicheskii analiz”, Matem. sb., 211:7 (2020), 93–120 | MR
[25] Pustovoitov S. E., “Topologicheskii analiz billiarda v ellipticheskom koltse v potentsialnom pole”, Fund. i prikl. matem., 22:6 (2019), 201–225 | MR
[26] Pustovoitov S. E., “Topologicheskii analiz billiarda, ogranichennogo sofokusnymi kvadrikami, v potentsialnom pole”, Matem. sb., 212:2 (2021), 81–105 | MR
[27] Kobtsev I. F., “Geodezicheskii potok dvumernogo ellipsoida v pole uprugoi sily: topologicheskaya klassifikatsiya reshenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 2, 27–33 | MR
[28] Fokicheva V. V., Topologicheskaya klassifikatsiya integriruemykh billiardov, Kand. dis., M., 2016
[29] Kharcheva I. S., “Izoenergeticheskie mnogoobraziya bilyardnykh knizhek”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 4, 12–22 | MR
[30] Yakobi K., Lektsii po dinamike, Gostekhizdat, M., 1936
[31] Kozlov V. V., “Nekotorye integriruemye obobscheniya zadachi Yakobi o geodezicheskikh na ellipsoide”, Prikl. matem. i mekhan., 59:1 (1995), 3–9 | MR