Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 21-31

Voir la notice de l'article provenant de la source Math-Net.Ru

A billiard inside a triaxial ellipsoid in a Hooke potential field (both attractive and repulsive) is considered. For each zone of non-bifurcational values of the energy, the homeomorphism class of the corresponding isoenergy $5$-surface in the phase space is determined. This result was obtained without using the integrability of the system. Following the method of V. V. Kozlov, we also present an explicit form of $n$ involutive first integrals for the multidimensional generalization of studied problem, i.e., a billiard in a Hooke potential field inside an $n$-axial ellipsoid in $n$-dimensional space.
@article{VMUMM_2022_6_a3,
     author = {G. V. Belozerov},
     title = {Topology of $5$-surfaces of a {3D} billiard inside a triaxial ellipsoid with {Hooke's} potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--31},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/}
}
TY  - JOUR
AU  - G. V. Belozerov
TI  - Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 21
EP  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/
LA  - ru
ID  - VMUMM_2022_6_a3
ER  - 
%0 Journal Article
%A G. V. Belozerov
%T Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 21-31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/
%G ru
%F VMUMM_2022_6_a3
G. V. Belozerov. Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 21-31. http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/