Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 21-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A billiard inside a triaxial ellipsoid in a Hooke potential field (both attractive and repulsive) is considered. For each zone of non-bifurcational values of the energy, the homeomorphism class of the corresponding isoenergy $5$-surface in the phase space is determined. This result was obtained without using the integrability of the system. Following the method of V. V. Kozlov, we also present an explicit form of $n$ involutive first integrals for the multidimensional generalization of studied problem, i.e., a billiard in a Hooke potential field inside an $n$-axial ellipsoid in $n$-dimensional space.
@article{VMUMM_2022_6_a3,
     author = {G. V. Belozerov},
     title = {Topology of $5$-surfaces of a {3D} billiard inside a triaxial ellipsoid with {Hooke's} potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--31},
     year = {2022},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/}
}
TY  - JOUR
AU  - G. V. Belozerov
TI  - Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 21
EP  - 31
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/
LA  - ru
ID  - VMUMM_2022_6_a3
ER  - 
%0 Journal Article
%A G. V. Belozerov
%T Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 21-31
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/
%G ru
%F VMUMM_2022_6_a3
G. V. Belozerov. Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 21-31. http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a3/

[1] Smale S., “Topology and mechanics. I”, Invent. math., 10:4 (1970), 305–331 | DOI | MR

[2] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR

[3] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii nekotorykh integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR

[4] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575

[5] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, Monografiya, v. 1, 2, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[6] Oshemkov A. A., “Fomenko invariants for the main integrable cases of rigid body motion equations”, Adv. Sov. Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR

[7] Bolsinov A. V., Rikhter P., Fomenko A. T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42

[8] Fomenko A. T., Vedyushkina V. V., “Bilyardy i integriruemost v geometrii i fizike. Novyi vzglyad i novye vozmozhnosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 3, 15–25

[9] Vedyushkina V. V., Fomenko A. T., Kharcheva I. S., “Modelirovanie nevyrozhdennykh bifurkatsii zamykanii reshenii integriruemykh sistem s dvumya stepenyami svobody integriruemymi topologicheskimi billiardami”, Dokl. RAN, 479:6 (2018), 607–610 | MR

[10] Vedyushkina V. V., Kibkalo V. A., “Realizatsiya bilyardami chislovogo invarianta rassloeniya Zeiferta integriruemykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 4, 22–28 | MR

[11] Kibkalo V. A., Fomenko A. T., Kharcheva I. S., “Realizatsiya integriruemykh gamiltonovykh sistem bilyardnymi knizhkami”, Tr. Mosk. matem. o-va, 82, no. 1, 2021, 49–78 | MR

[12] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | MR

[13] Vedyushkina V. V., “Invarianty Fomenko–Tsishanga nevypuklykh topologicheskikh billiardov”, Matem. sb., 210:3 (2019), 17–74 | MR

[14] Vedyushkina V. V., Kharcheva I. S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | MR

[15] Fomenko A. T., Vedyushkina V. V., Zav'yalov V. N., “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55 | DOI | MR

[16] Vedyushkina V. V., Fomenko A. T., “Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases”, Dokl. Math., 103:1 (2021), 1–4 | DOI | MR

[17] Fomenko A. T., Vedyushkina V. V., “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332 | DOI | MR

[18] Belozerov G. V., “Topologicheskaya klassifikatsiya integriruemykh geodezicheskikh billiardov na kvadrikakh v trekhmernom evklidovom prostranstve”, Matem. sb., 211:11 (2020), 3–40 | MR

[19] Vedyushkina (Fokicheva) V.V., Fomenko A. T., “Integriruemye geodezicheskie potoki na orientiruemykh dvumernykh poverkhnostyakh i topologicheskie billiardy”, Izv. RAN. Ser. matem., 83:6 (2019), 63–103 | MR

[20] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[21] Belozerov G. V., “Topologicheskaya klassifikatsiya billiardov v trekhmernom evklidovom prostranstve, ogranichennykh sofokusnymi kvadrikami”, Matem. sb., 213:2 (2022), 3–36 | MR

[22] Zung N. T., “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compos. Math., 101:2 (1996), 179–215 | MR

[23] Fomenko A. T., Kibkalo V. A., “Saddle Singularities in Integrable Hamiltonian Systems: Examples and Algorithms”, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, Understanding Complex Systems, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer, Cham, 2021, 1–24 | MR

[24] Kobtsev I. F., “Ellipticheskii billiard v pole potentsialnykh sil: klassifikatsiya dvizhenii, topologicheskii analiz”, Matem. sb., 211:7 (2020), 93–120 | MR

[25] Pustovoitov S. E., “Topologicheskii analiz billiarda v ellipticheskom koltse v potentsialnom pole”, Fund. i prikl. matem., 22:6 (2019), 201–225 | MR

[26] Pustovoitov S. E., “Topologicheskii analiz billiarda, ogranichennogo sofokusnymi kvadrikami, v potentsialnom pole”, Matem. sb., 212:2 (2021), 81–105 | MR

[27] Kobtsev I. F., “Geodezicheskii potok dvumernogo ellipsoida v pole uprugoi sily: topologicheskaya klassifikatsiya reshenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 2, 27–33 | MR

[28] Fokicheva V. V., Topologicheskaya klassifikatsiya integriruemykh billiardov, Kand. dis., M., 2016

[29] Kharcheva I. S., “Izoenergeticheskie mnogoobraziya bilyardnykh knizhek”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 4, 12–22 | MR

[30] Yakobi K., Lektsii po dinamike, Gostekhizdat, M., 1936

[31] Kozlov V. V., “Nekotorye integriruemye obobscheniya zadachi Yakobi o geodezicheskikh na ellipsoide”, Prikl. matem. i mekhan., 59:1 (1995), 3–9 | MR