Recurrence Legendre polynomials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

The recurrence polynomials partly orthogonal with respect to Lebesgue measure on the segment symmetric with respect to the unit circle are studied. The limiting distribution of its zeros is obtained in terms of a meromorphic function on compact Riemann surface. The interpretation of the limiting measure is obtained in terms of equilibrium problems in the logarithmic potential theory.
@article{VMUMM_2022_6_a0,
     author = {V. N. Sorokin},
     title = {Recurrence {Legendre} polynomials},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a0/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - Recurrence Legendre polynomials
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 3
EP  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a0/
LA  - ru
ID  - VMUMM_2022_6_a0
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T Recurrence Legendre polynomials
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 3-8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a0/
%G ru
%F VMUMM_2022_6_a0
V. N. Sorokin. Recurrence Legendre polynomials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2022), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2022_6_a0/