Anisotropic scalar constitutive equations and corresponding models of viscoplastic flow
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 54-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The tensor linear anisotropic constitutive relations of noncompressible viscoplastic flow connecting the stress deviator and strain rates and the following scalar relation connecting the quadratic stress invariant and the hardening function are considered. In the case of a perfect plastic material, the latter relation is an anisotropic Mises–Hencky quadratic criterion of plasticity. The mutual dependence of the fourth-rank tensors involved in tensor and scalar constitutive relations is established. As an illustration, the results are given for an orthotropic material.
@article{VMUMM_2022_5_a9,
     author = {D. V. Georgievskii},
     title = {Anisotropic scalar constitutive equations and corresponding models of viscoplastic flow},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--57},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a9/}
}
TY  - JOUR
AU  - D. V. Georgievskii
TI  - Anisotropic scalar constitutive equations and corresponding models of viscoplastic flow
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 54
EP  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a9/
LA  - ru
ID  - VMUMM_2022_5_a9
ER  - 
%0 Journal Article
%A D. V. Georgievskii
%T Anisotropic scalar constitutive equations and corresponding models of viscoplastic flow
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 54-57
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a9/
%G ru
%F VMUMM_2022_5_a9
D. V. Georgievskii. Anisotropic scalar constitutive equations and corresponding models of viscoplastic flow. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 54-57. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a9/

[1] Shemyakin E. I., “Anizotropiya plasticheskogo sostoyaniya”, Chislennye metody mekhaniki sploshnoi sredy, 4:4 (1973), 150–162

[2] Pobedrya B. E., “Teoriya techeniya anizotropnoi sredy”, Prochnost, plastichnost i vyazkouprugost materialov i konstruktsii, UNTs AN SSSR, Sverdlovsk, 1986, 101–108

[3] Berestova S. A., Mityushov E. A., “O fizicheskikh uravneniyakh teorii plasticheskogo techeniya anizotropnykh materialov”, Izv. RAN. Mekhan. tverdogo tela, 2004, no. 5, 96–105

[4] Annin B. D., Ostrosablin N. I., “Anizotropiya uprugikh svoistv materialov”, Prikl. mekhan. i tekhn. fiz., 48:6 (2008), 131–151

[5] Hill R., “Constitutive modelling of orthotropic plasticity in sheet metals”, J. Mech. and Phys. Solids, 38:5 (1990), 405–417 | DOI | MR

[6] Zhigalkin V. M., Rynkov B. A., “Anizotropnoe uprochnenie ortotropnogo materiala”, Prikl. mekhan. i tekhn. fiz., 36:5 (1995), 81–86