@article{VMUMM_2022_5_a9,
author = {D. V. Georgievskii},
title = {Anisotropic scalar constitutive equations and corresponding models of viscoplastic flow},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {54--57},
year = {2022},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a9/}
}
TY - JOUR AU - D. V. Georgievskii TI - Anisotropic scalar constitutive equations and corresponding models of viscoplastic flow JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 54 EP - 57 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a9/ LA - ru ID - VMUMM_2022_5_a9 ER -
D. V. Georgievskii. Anisotropic scalar constitutive equations and corresponding models of viscoplastic flow. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 54-57. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a9/
[1] Shemyakin E. I., “Anizotropiya plasticheskogo sostoyaniya”, Chislennye metody mekhaniki sploshnoi sredy, 4:4 (1973), 150–162
[2] Pobedrya B. E., “Teoriya techeniya anizotropnoi sredy”, Prochnost, plastichnost i vyazkouprugost materialov i konstruktsii, UNTs AN SSSR, Sverdlovsk, 1986, 101–108
[3] Berestova S. A., Mityushov E. A., “O fizicheskikh uravneniyakh teorii plasticheskogo techeniya anizotropnykh materialov”, Izv. RAN. Mekhan. tverdogo tela, 2004, no. 5, 96–105
[4] Annin B. D., Ostrosablin N. I., “Anizotropiya uprugikh svoistv materialov”, Prikl. mekhan. i tekhn. fiz., 48:6 (2008), 131–151
[5] Hill R., “Constitutive modelling of orthotropic plasticity in sheet metals”, J. Mech. and Phys. Solids, 38:5 (1990), 405–417 | DOI | MR
[6] Zhigalkin V. M., Rynkov B. A., “Anizotropnoe uprochnenie ortotropnogo materiala”, Prikl. mekhan. i tekhn. fiz., 36:5 (1995), 81–86