Short complete diagnostic tests for logic circuits in one infinite basis
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 51-54
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that each Boolean function can be modeled by a logic circuit with one additional input in a basis consisting of conjunctions of an arbitrary number of variables, two-input disjunction and negation, allowing a complete diagnostic test with the length no more than $n+1$ relative to constant faults of type $1$ at outputs of logic gates.
@article{VMUMM_2022_5_a8,
     author = {K. A. Popkov},
     title = {Short complete diagnostic tests for logic circuits in one infinite basis},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--54},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a8/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short complete diagnostic tests for logic circuits in one infinite basis
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 51
EP  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a8/
LA  - ru
ID  - VMUMM_2022_5_a8
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short complete diagnostic tests for logic circuits in one infinite basis
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 51-54
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a8/
%G ru
%F VMUMM_2022_5_a8
K. A. Popkov. Short complete diagnostic tests for logic circuits in one infinite basis. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 51-54. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a8/

[1] Yablonskii S. V., “Nadezhnost i kontrol upravlyayuschikh sistem”, Mat-ly Vsesoyuz. seminara po diskretn. matem. i ee prilozheniyam (Moskva, 31 yanvarya–2 fevralya 1984 g.), Izd-vo MGU, M., 1986, 7–12 | MR

[2] Yablonskii S. V., “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matematicheskie voprosy kibernetiki, 1, Nauka, M., 1988, 5–25

[3] Redkin N. P., Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992

[4] Redkin N. P., “O sinteze legkotestiruemykh skhem v odnom beskonechnom bazise”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 3, 29–33

[5] Borodina Yu. V., “O skhemakh, dopuskayuschikh edinichnye testy dliny $1$ pri konstantnykh neispravnostyakh na vykhodakh elementov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2008, no. 5, 49–52 | MR

[6] Borodina Yu. V., “Nizhnyaya otsenka dliny polnogo proveryayuschego testa v bazise $\{x~|~y\}$”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 4, 49–51 | MR

[7] Popkov K. A., “Nizhnie otsenki dlin polnykh diagnosticheskikh testov dlya skhem i vkhodov skhem”, Prikl. diskretn. matem., 2016, no. 4 (34), 65–73

[8] Redkin N. P., “K voprosu o dline diagnosticheskikh testov dlya skhem”, Matem. zametki, 2017, no. 4, 624–627

[9] Popkov K. A., “Minimalnye polnye proveryayuschie testy dlya skhem iz funktsionalnykh elementov v standartnom bazise”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 4, 54–57

[10] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986 | MR