On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 48-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Series with respect to a system of characters of a zero-dimensional compact commutative group are considered. Generalization of the test of convergence of Fourier series of the Vilenkin system in the case of unbounded quasimonotone $p_k$ for functions having a generalized bounded $\Phi$-fluctuation, which was earlier obtained in the case of bounded sequences $p_k$, is proved.
@article{VMUMM_2022_5_a7,
author = {S. M. Voronov},
title = {On the attribute of uniform convergence of {Fourier} series of the {Vilenkin} system in the case of unbounded $p_k$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {48--51},
publisher = {mathdoc},
number = {5},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/}
}
TY - JOUR AU - S. M. Voronov TI - On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$ JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 48 EP - 51 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/ LA - ru ID - VMUMM_2022_5_a7 ER -
%0 Journal Article %A S. M. Voronov %T On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$ %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2022 %P 48-51 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/ %G ru %F VMUMM_2022_5_a7
S. M. Voronov. On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/