On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 48-51
Cet article a éte moissonné depuis la source Math-Net.Ru
Series with respect to a system of characters of a zero-dimensional compact commutative group are considered. Generalization of the test of convergence of Fourier series of the Vilenkin system in the case of unbounded quasimonotone $p_k$ for functions having a generalized bounded $\Phi$-fluctuation, which was earlier obtained in the case of bounded sequences $p_k$, is proved.
@article{VMUMM_2022_5_a7,
author = {S. M. Voronov},
title = {On the attribute of uniform convergence of {Fourier} series of the {Vilenkin} system in the case of unbounded $p_k$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {48--51},
year = {2022},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/}
}
TY - JOUR AU - S. M. Voronov TI - On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$ JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 48 EP - 51 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/ LA - ru ID - VMUMM_2022_5_a7 ER -
%0 Journal Article %A S. M. Voronov %T On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$ %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2022 %P 48-51 %N 5 %U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/ %G ru %F VMUMM_2022_5_a7
S. M. Voronov. On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/
[1] Voronov S. M., “O ravnomernoi skhodimosti ryadov Fure po sisteme Vilenkina v sluchae neogranichennykh $p_k$”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 1, 61–65
[2] Vilenkin N. Ya., “O klasse polnykh ortonormirovannykh sistem”, Izv. AN SSSR. Ser. matem., 11 (1947), 363–400
[3] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR
[4] Onneweer C. W., Waterman D., “Uniform convergence of Fourier series on groups, I”, Michigan Math. J., 18 (1971), 265–273 | DOI | MR
[5] Zigmund A., Trigonometricheskie ryady, v. I, Mir, M., 1965