On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 48-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Series with respect to a system of characters of a zero-dimensional compact commutative group are considered. Generalization of the test of convergence of Fourier series of the Vilenkin system in the case of unbounded quasimonotone $p_k$ for functions having a generalized bounded $\Phi$-fluctuation, which was earlier obtained in the case of bounded sequences $p_k$, is proved.
@article{VMUMM_2022_5_a7,
     author = {S. M. Voronov},
     title = {On the attribute of uniform convergence of {Fourier} series of the {Vilenkin} system in the case of unbounded $p_k$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--51},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/}
}
TY  - JOUR
AU  - S. M. Voronov
TI  - On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 48
EP  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/
LA  - ru
ID  - VMUMM_2022_5_a7
ER  - 
%0 Journal Article
%A S. M. Voronov
%T On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 48-51
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/
%G ru
%F VMUMM_2022_5_a7
S. M. Voronov. On the attribute of uniform convergence of Fourier series of the Vilenkin system in the case of unbounded $p_k$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a7/

[1] Voronov S. M., “O ravnomernoi skhodimosti ryadov Fure po sisteme Vilenkina v sluchae neogranichennykh $p_k$”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 1, 61–65

[2] Vilenkin N. Ya., “O klasse polnykh ortonormirovannykh sistem”, Izv. AN SSSR. Ser. matem., 11 (1947), 363–400

[3] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR

[4] Onneweer C. W., Waterman D., “Uniform convergence of Fourier series on groups, I”, Michigan Math. J., 18 (1971), 265–273 | DOI | MR

[5] Zigmund A., Trigonometricheskie ryady, v. I, Mir, M., 1965