The estimation of traffic intensity parameter for a single-channel queueing system with regenerative input flow
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 45-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A single-channel queueing system with regenerative input flow and an unreliable device is considered. A statistical estimation of the traffic intensity parameter $\rho$ is proposed, its consistency and asymptotic normality are proved. An algorithm for testing the hypothesis $\rho=\rho_0$ against various alternatives is presented.
@article{VMUMM_2022_5_a6,
     author = {G. A. Krylova},
     title = {The estimation of traffic intensity parameter for a single-channel queueing system with regenerative input flow},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {45--48},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a6/}
}
TY  - JOUR
AU  - G. A. Krylova
TI  - The estimation of traffic intensity parameter for a single-channel queueing system with regenerative input flow
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 45
EP  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a6/
LA  - ru
ID  - VMUMM_2022_5_a6
ER  - 
%0 Journal Article
%A G. A. Krylova
%T The estimation of traffic intensity parameter for a single-channel queueing system with regenerative input flow
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 45-48
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a6/
%G ru
%F VMUMM_2022_5_a6
G. A. Krylova. The estimation of traffic intensity parameter for a single-channel queueing system with regenerative input flow. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 45-48. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a6/

[1] Afanaseva L. G., Belorusov T. N., “Predelnye teoremy dlya sistem s neterpelivymi klientami v usloviyakh vysokoi zagruzki”, Teoriya veroyatn. i ee primen., 56:4 (2011), 788–796

[2] Basawa I. V., Prabhu N. U., “Estimation in single server queues”, Naval Res. Log. Quart., 28:3 (1981), 475–487 | DOI | MR

[3] Clarke A. B., “Maximum likelihood estimates in a simple queue”, Ann. Math. Stat., 28:4 (1957), 1036–1040 | DOI | MR

[4] Cox D. R., “Some problems of statistical analysis with congestion”, Proc. Symp. on Congestion Theory, eds. W.L. Smith, W. E. Wilkinson, University of North Carolina Press, Chapel Hill, NC, 1965 | MR

[5] Rao S. S., Harishchandra K., “On a large sample test for the traffic intensity in GI/G/s queue”, Naval Res. Log. Quart., 33:3 (1986), 545–550 | DOI | MR

[6] Afanasyeva L. G., Bashtova E. E., “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing systems, 76:2 (2014), 125–147 | DOI | MR

[7] Smith W. L., “Regenerative stochastic processes”, Proc. Roy. Soc. London, 232 (1955), 6–31 | MR

[8] Borovkov A. A., Matematicheskaya statistika, Nauka, Novosibirsk, 1997

[9] Damerdji H., “Strong consistency of the variance estimator in steady-state simulation output analysis”, Math. Oper. Res., 19:2 (1994), 494–512 | DOI | MR

[10] Zaitsev A. Yu., “Tochnost silnoi gaussovskoi approksimatsii dlya summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. sem. POMI, 364, 2009, 148–165

[11] Horvath L., “Strong aproximation of certain stopped sums”, Statist. Probab. Lett., 2 (1984), 181–185 | DOI | MR