Free oscillations of an orthotropic conical shell
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 39-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Free oscillations of an orthotropic conical shell of finite length are considered. This is a problem of the 80–90 years of the last century. Most problems of deformable solid mechanics are described by elliptic equations that have smooth solutions, and therefore the development of algorithms that take into account this smoothness is relevant. The paper presents a modern algorithm without saturation and considers specific calculations that show its high efficiency.
@article{VMUMM_2022_5_a5,
     author = {S. D. Algazin and I. A. Selivanov},
     title = {Free oscillations of an orthotropic conical shell},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--44},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a5/}
}
TY  - JOUR
AU  - S. D. Algazin
AU  - I. A. Selivanov
TI  - Free oscillations of an orthotropic conical shell
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 39
EP  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a5/
LA  - ru
ID  - VMUMM_2022_5_a5
ER  - 
%0 Journal Article
%A S. D. Algazin
%A I. A. Selivanov
%T Free oscillations of an orthotropic conical shell
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 39-44
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a5/
%G ru
%F VMUMM_2022_5_a5
S. D. Algazin; I. A. Selivanov. Free oscillations of an orthotropic conical shell. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 39-44. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a5/

[1] Algazin S. D., Chislennye algoritmy bez nasyscheniya v klassicheskikh zadachakh matematicheskoi fiziki, 4-e izd., pererab., URSS, M., 2019

[2] Algazin S. D., h-matritsa, novyi matematicheskii apparat dlya diskretizatsii mnogomernykh uravnenii matematicheskoi fiziki, URSS, M., 2019

[3] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986; А. Д. Брюно (ред.), 2-е изд., испр. и доп., РХД, М.–Ижевск, 2002

[4] Orszag S.A, Gotlib D., Numerical Analysis of Spectral Methods. Theory and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 1977 | MR

[5] Toselli A., Widlund O., Domain Decomposition Methods — Algorithms and Theory, Springer Series in Computational Mathematics, Springer-Verlag, Berlin–Heidelberg, 2005 | DOI | MR

[6] Schwab C., p and hp Finite Element Methods: Theory and Application to Solid and Fluid Mechanics, Oxford University Press, Oxford, 1998 | MR

[7] Schwab C., Suri M., Xenophontos C., The hp finite element method for problems in mechanics with boundary layers, Seminar fur Angewandte Mathematik Eidgenssische Technische Hochschule CH-8092. Research Report No 96-20, Zurich, Switzerland, 1996 | MR

[8] V.V. Bolotin (red.), Vibratsii v tekhnike: spravochnik. Kolebaniya lineinykh sistem, Mashinostroenie, M., 1978

[9] Tong L., “Free vibration of orthotropic conical shells”, Int. J. Engng. Sci., 31:5 (1993), 719–733 | DOI

[10] Tong L., Buckling and vibration of conical shells composed of composite materials, P.H.D. Thesis, Beijing Univ. of Aeronautics and Astronautics, People's Republic of China, 1988

[11] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhteorizdat, M., 1954 | MR

[12] Gavrikov M. B., “Metody bez nasyscheniya v vychislitelnoi matematike”, Preprinty IPM im. M.V. Keldysha, 2019, 075

[13] Gavrikov M. B., Tayurskii A. A., Funktsionalnyi analiz i vychislitelnaya matematika, URSS, M., 2016