Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 31-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate a nonlinear Maxwell-type constitutive equation for shear deformation of polymers in flow state or polymer viscoelastic melts and solutions which takes into account interaction of deformation process and structure evolution, namely, influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. The constitutive equation is governed by an increasing material function and six positive parameters. We reduce it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, stress and relative cross-links density) and prove existence and uniqueness of its equilibrium point and prove that its coordinates depend monotonically on every material parameter and on shear rate. We derive general equations for model flow curve and viscosity curve and prove that the first one increase and the second one decrease while the shear rate grows. Thus the model describes basic phenomena observed for simple shear flow of shear thinning fluids.
@article{VMUMM_2022_5_a4,
     author = {A. M. Stolin and A. V. Khokhlov},
     title = {Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--39},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a4/}
}
TY  - JOUR
AU  - A. M. Stolin
AU  - A. V. Khokhlov
TI  - Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 31
EP  - 39
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a4/
LA  - ru
ID  - VMUMM_2022_5_a4
ER  - 
%0 Journal Article
%A A. M. Stolin
%A A. V. Khokhlov
%T Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 31-39
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a4/
%G ru
%F VMUMM_2022_5_a4
A. M. Stolin; A. V. Khokhlov. Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 31-39. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a4/

[1] Bingham E. C., Fluidity and Plasticity, N.Y., 1922

[2] Reiner M., “Rheology”, Encyclopedia of Physics, v. 6, Springer, Berlin–Heidelberg, 1958, 434–550 | MR

[3] Rebinder P. A., Poverkhnostnye yavleniya v dispersnykh sistemakh. Kolloidnaya khimiya. Izbrannye trudy, Nauka, M., 1978

[4] Coleman B. D., Makrovitz A., Noll W., Viscometric Flows of Non-Newtonian Fluids. Theory and Experiment, Springer, Berlin–Heidelberg–New York, 1966 | MR

[5] Frenkel Ya. I., Kineticheskaya teoriya zhidkostei, Nauka, L., 1975

[6] Vinogradov G. V., Malkin A. Ya., Reologiya polimerov, Khimiya, M., 1977

[7] Bibik E. E., Reologiya dispersnykh sistem, Izd-vo Leningr. un-ta, L., 1981

[8] Bartenev G. M., Zelenev Yu. V., Fizika i mekhanika polimerov, Vysshaya shkola, M., 1983

[9] Larson R. G., Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston, 1988

[10] Urev N. B., Fiziko-khimicheskie osnovy tekhnologii dispersnykh sistem i materialov, M., 1988

[11] Leonov A. I., Prokunin A. N., Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London, 1994

[12] Macosko C., Rheology: Principles, Measurements and Applications, VCH, N.Y., 1994

[13] Schramm G., A Practical Approach to Rheology and Rheometry, Gebrueder Haake GmbH, Karlsruhe, 1994

[14] Rohn C. L., Analytical Polymer Rheology, Hanser Publishers, Munich, 1995

[15] Larson R. G., Structure and Rheology of Complex Fluids, Oxford Press, N.Y., 1999

[16] Gupta R. K., Polymer and Composite Rheology, Marcel Dekker, N.Y., 2000

[17] Tanner R. I., Engineering Rheology, Oxford University Press, Oxford, 2000

[18] Malkin A. Y., Isayev A. I., Rheology: Conceptions, Methods, Applications, 2nd Ed., ChemTec Publishing, Toronto, 2012

[19] Kirsanov E. A., Matveenko V. N., Nenyutonovskoe povedenie strukturirovannykh sistem, Tekhnosfera, M., 2016

[20] Stolin A. M., Malkin A. Ya., Merzhanov A. G., “Neizotermicheskie protsessy i metody issledovaniya v khimii i mekhanike polimerov”, Uspekhi khimii, 48:8 (1979), 1492–1517

[21] Prokunin A. N., “O nelineinykh opredelyayuschikh sootnosheniyakh maksvellovskogo tipa dlya opisaniya dvizheniya polimernykh zhidkostei”, Prikl. matem. i mekhan., 48:6 (1984), 957–965 | MR

[22] Leonov A. I., “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data”, Rheol. Ser., 8 (1999), 519–575 | DOI

[23] Stickel J. J., Powell R. L., “Fluid Mechanics and Rheology of Dense Suspensions”, Annu. Rev. Fluid Mech., 37 (2005), 129–149 | DOI | MR

[24] Mueller S., Llewellin E. W., Mader H. M., “The rheology of suspensions of solid particles”, Proc. Roy. Soc. A, 466:2116 (2010), 1201–1228 | DOI

[25] Malkin A.Ya., Patlazhan S. A., “Wall slip for complex liquids — Phenomenon and its Causes”, Adv. Colloid and Interface Sci., 257 (2018), 42–57 | DOI

[26] Stolin A. M., Khudyaev S. I., Buchatskii L. M., “K teorii sverkhanomalii vyazkosti strukturirovannykh sistem”, Dokl. AN SSSR, 243:26 (1978), 430–433

[27] Stolin A. M., Irzhak V. I., “Strukturno-neodnorodnye rezhimy techeniya v protsesse formovaniya polimernykh volokon”, Vysokomol. soedineniya. Cer. B, 35:7 (1993), 902–904

[28] Belyaeva N. A., Stolin A. M., Stelmakh L. S., “Rezhimy tverdofaznoi ekstruzii vyazkouprugikh strukturirovannykh sistem”, Inzh. fiz., 2009, no. 1, 10–16

[29] Brady J. F., Morris J. F., “Microstructure of strongly sheared suspensions and its impact on rheology and diffusion”, J. Fluid Mech., 348 (1997), 103–139 | DOI

[30] Tucker C. L., Moldenaers P., “Microstructural evolution in polymer blends”, Annu. Rev. Fluid Mech., 34 (2002), 177–210 | DOI | MR

[31] Malkin A. Ya., Kulichikhin V. G., “Struktura i reologicheskie svoistva vysokokontsentrirovannykh emulsii. Sovremennyi vzglyad”, Uspekhi khimii, 84:8 (2015), 803–825

[32] Padmanabhan K. A., Vasin R. A., Enikeev F. U., Superplastic Flow: Phenomenology and Mechanics, Springer-Verlag, Berlin–Heidelberg, 2001 | MR

[33] Eglit M. E., Yakubenko A. E., Zaiko Yu. S., “Matematicheskoe modelirovanie sklonovykh potokov s uchetom nenyutonovskikh svoistv dvizhuscheisya sredy”, Tr. Matem. in-ta RAN, 300, 2018, 229–239 | MR

[34] Khokhlov A. V., “Properties of a nonlinear viscoelastoplastic model of Maxwell type with two material functions”, Moscow Univ. Mech. Bull., 71:6 (2016), 132–136 | DOI

[35] Khokhlov A. V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: modelirovanie vliyaniya temperatury na krivye deformirovaniya, relaksatsii i polzuchesti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 160–179 | DOI

[36] Khokhlov A. V., “A nonlinear Maxwell-type model for rheonomic materials: stability under symmetric cyclic loadings”, Moscow Univ. Mech. Bull., 73:2 (2018), 39–42 | DOI

[37] Khokhlov A. V., “Indikatory primenimosti i metodiki identifikatsii nelineinoi modeli tipa Maksvella dlya reonomnykh materialov po krivym polzuchesti pri stupenchatykh nagruzheniyakh”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. nauki, 2018, no. 6, 92–112 | DOI

[38] Khokhlov A. V., “Applicability indicators and identification techniques for a nonlinear Maxwell-type elastovisco- plastic model using loading–unloading curves”, Mech. Compos. Mater., 55:2 (2019), 195–210 | DOI

[39] Khokhlov A. V., “Possibility to describe the alternating and non-monotonic time dependence of Poisson's ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model”, Russ. Metallurgy (Metally), 2019, no. 10, 956–963 | DOI

[40] Khokhlov A. V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI

[41] Khokhlov A. V., “Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials”, Mech. Solids, 54:3 (2019), 384–399 | DOI