@article{VMUMM_2022_5_a4,
author = {A. M. Stolin and A. V. Khokhlov},
title = {Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {31--39},
year = {2022},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a4/}
}
TY - JOUR AU - A. M. Stolin AU - A. V. Khokhlov TI - Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 31 EP - 39 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a4/ LA - ru ID - VMUMM_2022_5_a4 ER -
%0 Journal Article %A A. M. Stolin %A A. V. Khokhlov %T Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2022 %P 31-39 %N 5 %U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a4/ %G ru %F VMUMM_2022_5_a4
A. M. Stolin; A. V. Khokhlov. Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 31-39. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a4/
[1] Bingham E. C., Fluidity and Plasticity, N.Y., 1922
[2] Reiner M., “Rheology”, Encyclopedia of Physics, v. 6, Springer, Berlin–Heidelberg, 1958, 434–550 | MR
[3] Rebinder P. A., Poverkhnostnye yavleniya v dispersnykh sistemakh. Kolloidnaya khimiya. Izbrannye trudy, Nauka, M., 1978
[4] Coleman B. D., Makrovitz A., Noll W., Viscometric Flows of Non-Newtonian Fluids. Theory and Experiment, Springer, Berlin–Heidelberg–New York, 1966 | MR
[5] Frenkel Ya. I., Kineticheskaya teoriya zhidkostei, Nauka, L., 1975
[6] Vinogradov G. V., Malkin A. Ya., Reologiya polimerov, Khimiya, M., 1977
[7] Bibik E. E., Reologiya dispersnykh sistem, Izd-vo Leningr. un-ta, L., 1981
[8] Bartenev G. M., Zelenev Yu. V., Fizika i mekhanika polimerov, Vysshaya shkola, M., 1983
[9] Larson R. G., Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston, 1988
[10] Urev N. B., Fiziko-khimicheskie osnovy tekhnologii dispersnykh sistem i materialov, M., 1988
[11] Leonov A. I., Prokunin A. N., Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London, 1994
[12] Macosko C., Rheology: Principles, Measurements and Applications, VCH, N.Y., 1994
[13] Schramm G., A Practical Approach to Rheology and Rheometry, Gebrueder Haake GmbH, Karlsruhe, 1994
[14] Rohn C. L., Analytical Polymer Rheology, Hanser Publishers, Munich, 1995
[15] Larson R. G., Structure and Rheology of Complex Fluids, Oxford Press, N.Y., 1999
[16] Gupta R. K., Polymer and Composite Rheology, Marcel Dekker, N.Y., 2000
[17] Tanner R. I., Engineering Rheology, Oxford University Press, Oxford, 2000
[18] Malkin A. Y., Isayev A. I., Rheology: Conceptions, Methods, Applications, 2nd Ed., ChemTec Publishing, Toronto, 2012
[19] Kirsanov E. A., Matveenko V. N., Nenyutonovskoe povedenie strukturirovannykh sistem, Tekhnosfera, M., 2016
[20] Stolin A. M., Malkin A. Ya., Merzhanov A. G., “Neizotermicheskie protsessy i metody issledovaniya v khimii i mekhanike polimerov”, Uspekhi khimii, 48:8 (1979), 1492–1517
[21] Prokunin A. N., “O nelineinykh opredelyayuschikh sootnosheniyakh maksvellovskogo tipa dlya opisaniya dvizheniya polimernykh zhidkostei”, Prikl. matem. i mekhan., 48:6 (1984), 957–965 | MR
[22] Leonov A. I., “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data”, Rheol. Ser., 8 (1999), 519–575 | DOI
[23] Stickel J. J., Powell R. L., “Fluid Mechanics and Rheology of Dense Suspensions”, Annu. Rev. Fluid Mech., 37 (2005), 129–149 | DOI | MR
[24] Mueller S., Llewellin E. W., Mader H. M., “The rheology of suspensions of solid particles”, Proc. Roy. Soc. A, 466:2116 (2010), 1201–1228 | DOI
[25] Malkin A.Ya., Patlazhan S. A., “Wall slip for complex liquids — Phenomenon and its Causes”, Adv. Colloid and Interface Sci., 257 (2018), 42–57 | DOI
[26] Stolin A. M., Khudyaev S. I., Buchatskii L. M., “K teorii sverkhanomalii vyazkosti strukturirovannykh sistem”, Dokl. AN SSSR, 243:26 (1978), 430–433
[27] Stolin A. M., Irzhak V. I., “Strukturno-neodnorodnye rezhimy techeniya v protsesse formovaniya polimernykh volokon”, Vysokomol. soedineniya. Cer. B, 35:7 (1993), 902–904
[28] Belyaeva N. A., Stolin A. M., Stelmakh L. S., “Rezhimy tverdofaznoi ekstruzii vyazkouprugikh strukturirovannykh sistem”, Inzh. fiz., 2009, no. 1, 10–16
[29] Brady J. F., Morris J. F., “Microstructure of strongly sheared suspensions and its impact on rheology and diffusion”, J. Fluid Mech., 348 (1997), 103–139 | DOI
[30] Tucker C. L., Moldenaers P., “Microstructural evolution in polymer blends”, Annu. Rev. Fluid Mech., 34 (2002), 177–210 | DOI | MR
[31] Malkin A. Ya., Kulichikhin V. G., “Struktura i reologicheskie svoistva vysokokontsentrirovannykh emulsii. Sovremennyi vzglyad”, Uspekhi khimii, 84:8 (2015), 803–825
[32] Padmanabhan K. A., Vasin R. A., Enikeev F. U., Superplastic Flow: Phenomenology and Mechanics, Springer-Verlag, Berlin–Heidelberg, 2001 | MR
[33] Eglit M. E., Yakubenko A. E., Zaiko Yu. S., “Matematicheskoe modelirovanie sklonovykh potokov s uchetom nenyutonovskikh svoistv dvizhuscheisya sredy”, Tr. Matem. in-ta RAN, 300, 2018, 229–239 | MR
[34] Khokhlov A. V., “Properties of a nonlinear viscoelastoplastic model of Maxwell type with two material functions”, Moscow Univ. Mech. Bull., 71:6 (2016), 132–136 | DOI
[35] Khokhlov A. V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: modelirovanie vliyaniya temperatury na krivye deformirovaniya, relaksatsii i polzuchesti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 160–179 | DOI
[36] Khokhlov A. V., “A nonlinear Maxwell-type model for rheonomic materials: stability under symmetric cyclic loadings”, Moscow Univ. Mech. Bull., 73:2 (2018), 39–42 | DOI
[37] Khokhlov A. V., “Indikatory primenimosti i metodiki identifikatsii nelineinoi modeli tipa Maksvella dlya reonomnykh materialov po krivym polzuchesti pri stupenchatykh nagruzheniyakh”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. nauki, 2018, no. 6, 92–112 | DOI
[38] Khokhlov A. V., “Applicability indicators and identification techniques for a nonlinear Maxwell-type elastovisco- plastic model using loading–unloading curves”, Mech. Compos. Mater., 55:2 (2019), 195–210 | DOI
[39] Khokhlov A. V., “Possibility to describe the alternating and non-monotonic time dependence of Poisson's ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model”, Russ. Metallurgy (Metally), 2019, no. 10, 956–963 | DOI
[40] Khokhlov A. V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI
[41] Khokhlov A. V., “Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials”, Mech. Solids, 54:3 (2019), 384–399 | DOI