Topological models of propositional logic of problems and propositions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 25-30

Voir la notice de l'article provenant de la source Math-Net.Ru

The propositional fragment $\mathrm{HC}$ of the joint logic of problems and propositions introduced by S. A. Melikhov is considered. Topological models of this logic are constructed and the completeness of the logic $\mathrm{HC}$ with respect to this type of models is shown. Topological models of the logic $\mathrm{H}4$ introduced by S. Artemov and T. Protopopescu are also constructed.
@article{VMUMM_2022_5_a3,
     author = {A. A. Onoprienko},
     title = {Topological models of propositional logic of problems and propositions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--30},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/}
}
TY  - JOUR
AU  - A. A. Onoprienko
TI  - Topological models of propositional logic of problems and propositions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 25
EP  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/
LA  - ru
ID  - VMUMM_2022_5_a3
ER  - 
%0 Journal Article
%A A. A. Onoprienko
%T Topological models of propositional logic of problems and propositions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 25-30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/
%G ru
%F VMUMM_2022_5_a3
A. A. Onoprienko. Topological models of propositional logic of problems and propositions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/