Topological models of propositional logic of problems and propositions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 25-30
Voir la notice de l'article provenant de la source Math-Net.Ru
The propositional fragment $\mathrm{HC}$ of the joint logic of problems and propositions introduced by S. A. Melikhov is considered. Topological models of this logic are constructed and the completeness of the logic $\mathrm{HC}$ with respect to this type of models is shown. Topological models of the logic $\mathrm{H}4$ introduced by S. Artemov and T. Protopopescu are also constructed.
@article{VMUMM_2022_5_a3,
author = {A. A. Onoprienko},
title = {Topological models of propositional logic of problems and propositions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--30},
publisher = {mathdoc},
number = {5},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/}
}
TY - JOUR AU - A. A. Onoprienko TI - Topological models of propositional logic of problems and propositions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 25 EP - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/ LA - ru ID - VMUMM_2022_5_a3 ER -
A. A. Onoprienko. Topological models of propositional logic of problems and propositions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/