@article{VMUMM_2022_5_a3,
author = {A. A. Onoprienko},
title = {Topological models of propositional logic of problems and propositions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--30},
year = {2022},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/}
}
A. A. Onoprienko. Topological models of propositional logic of problems and propositions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a3/
[1] Melikhov S. A., A Galois connection between classical and intuitionistic logics. I: Syntax. 2013/17, arXiv: 1312.2575
[2] Melikhov S. A., “A Galois connection between classical and intuitionistic logics. I: Semantics. 2015/18”, arXiv: 1504.03379
[3] Kolmogorov A. N., Matematika i mekhanika: Izbrannye trudy, Nauka, M., 1985
[4] Onoprienko A. A., “Semantika tipa Kripke dlya propozitsionalnoi logiki zadach i vyskazyvanii”, Matem. sb., 211:5 (2020), 98–125 | MR
[5] Onoprienko A. A., “Predikatnyi variant sovmestnoi logiki zadach i vyskazyvanii”, Matem. sb., 213:7 (2022), 97–120 | MR
[6] Fairtlough M., Mendler M., “Propositional lax logic”, Inform. and Comput., 137:1 (1997), 1–33 | DOI | MR
[7] Fairtlough M. V.H., Walton M., Quantified lax logic, Tech. rep. CS-97-11, Univ. of Sheffield, 1997
[8] Artemov S., Protopopescu T., Intuitionistic Epistemic Logic. 2014/16, arXiv: 1406.1582v2 | MR
[9] Goldblatt R., “Cover semantics for quantified lax logic”, J. Logic and Comput., 21:6 (2011), 1035–1063 | DOI | MR
[10] Krupskii V. N., “O modelirovanii znaniya v sotsialnykh setyakh”, L694. Desyatye Smirnovskie chteniya, mat-ly Mezhdunar. nauch. konf. (Moskva, 15–17 iyunya 2017 g.)
[11] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972 | MR
[12] Alexandroff P., “Diskrete raume”, Matem. sb., 2:3 (1937), 501–519
[13] Baron M. E., “A note on the historical development of logic diagrams: Leibniz, Euler and Venn”, The mathematical gazette, 53:384 (1969), 113–125 | DOI
[14] Stone M. H., “Topological representations of distributive lattices and Brouwerian logics”, Časopis pro pěstování matematiky a fysiky, 67:1 (1938), 1–25 | DOI | MR
[15] Tsao-Chen T., “Algebraic postulates and a geometric interpretation for the Lewis calculus of strict implication”, Bull. Amer. Math. Soc., 44:10 (1938), 737–744 | DOI | MR
[16] Tarski A., “Der aussagenkalkul und die topologie”, J. Symbol. Logic, 4:1 (1939), 26–27 | MR
[17] McKinsey J. C.C., “A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology”, J. Symbol. Logic, 6:4 (1941), 117–124 | DOI | MR