Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 17-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Convergence of Weak Greedy Algorithms (WGA) and Weak Orthogonal Greedy Algorithms (WOGA) is studied for the subspace $\ell_1\subset\ell_2$ and dictionaries obtained from the standard orthogonal basis by additing one vector. It is shown that the condition on a weakening sequence sufficient for convergence of WOGA in the case of the orthogonal dictionary and an approximated element from $\ell_1$ is not applicable for these extensions of the dictionary. However, if a finite vector is added to the standard orthogonal dictionary, then the condition applicability holds. Similar results are presented for WGA. It is also shown that adding a vector even from $\ell_1$ to the standard orthogonal dictionary can significantly reduce the convergence rate of the Pure Greedy Algorithm (PGA).
@article{VMUMM_2022_5_a2,
     author = {A. S. Orlova},
     title = {Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {17--25},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a2/}
}
TY  - JOUR
AU  - A. S. Orlova
TI  - Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 17
EP  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a2/
LA  - ru
ID  - VMUMM_2022_5_a2
ER  - 
%0 Journal Article
%A A. S. Orlova
%T Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 17-25
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a2/
%G ru
%F VMUMM_2022_5_a2
A. S. Orlova. Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 17-25. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a2/

[1] DeVore R. A., Temlyakov V. N., “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:1 (1996), 173–187 | DOI | MR

[2] Temlyakov V., Greedy Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2011 | MR

[3] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[4] Temlyakov V. N., “Weak greedy algorithms”, Adv. Comput. Math., 12:2–3 (2000), 213–227 | DOI | MR

[5] Orlova A. S., “Skorost skhodimosti slabykh zhadnykh priblizhenii po ortogonalnym slovaryam”, Vestn. Mosk. un-ta. Matem. Mekhan., 2017, no. 2, 68–72