Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 17-25
Voir la notice de l'article provenant de la source Math-Net.Ru
Convergence of Weak Greedy Algorithms (WGA) and Weak Orthogonal Greedy Algorithms (WOGA) is studied for the subspace $\ell_1\subset\ell_2$ and dictionaries obtained from the standard orthogonal basis by additing one vector. It is shown that the condition on a weakening sequence sufficient for convergence of WOGA in the case of the orthogonal dictionary and an approximated element from $\ell_1$ is not applicable for these extensions of the dictionary. However, if a finite vector is added to the standard orthogonal dictionary, then the condition applicability holds. Similar results are presented for WGA. It is also shown that adding a vector even from $\ell_1$ to the standard orthogonal dictionary can significantly reduce the convergence rate of the Pure Greedy Algorithm (PGA).
@article{VMUMM_2022_5_a2,
author = {A. S. Orlova},
title = {Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {17--25},
publisher = {mathdoc},
number = {5},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a2/}
}
TY - JOUR AU - A. S. Orlova TI - Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 17 EP - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a2/ LA - ru ID - VMUMM_2022_5_a2 ER -
A. S. Orlova. Convergence of a weak greedy algorithm when one vector is added to the orthogonal dictionary. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 17-25. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a2/