A solution to heat equation with exacerbation and stopped heat wave
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 61-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generalization of Samarskiy–Sobol solution in the mode of heat exacerbation and localization is obtained for a quasilinear heat equation in half-space. The analogy of this solution with moisture-saturated soil permafrost zone summer heating is discussed.
@article{VMUMM_2022_5_a11,
     author = {V. L. Natyaganov and Yu. D. Skobennikova},
     title = {A solution to heat equation with exacerbation and stopped heat wave},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--63},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a11/}
}
TY  - JOUR
AU  - V. L. Natyaganov
AU  - Yu. D. Skobennikova
TI  - A solution to heat equation with exacerbation and stopped heat wave
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 61
EP  - 63
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a11/
LA  - ru
ID  - VMUMM_2022_5_a11
ER  - 
%0 Journal Article
%A V. L. Natyaganov
%A Yu. D. Skobennikova
%T A solution to heat equation with exacerbation and stopped heat wave
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 61-63
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a11/
%G ru
%F VMUMM_2022_5_a11
V. L. Natyaganov; Yu. D. Skobennikova. A solution to heat equation with exacerbation and stopped heat wave. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 61-63. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a11/

[1] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987

[2] Galaktionov V. A., Kurdyumov S. P., Samarskii A. A., “Ob asimptoticheskikh “sobstvennykh funktsiyakh” zadachi Koshi dlya odnogo nelineinogo parabolicheskogo uravneniya”, Matem. sb., 126(168):4 (1985), 435–472 | MR

[3] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2002

[4] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie: Idei. Metody. Primery, Fizmatlit, M., 2001 | MR

[5] Lykov A. V., Teplomassoobmen (spravochnik), Energiya, M., 1978

[6] Dilman V. V., Polyanin A. D., Metody modelnykh uravnenii i analogii, Khimiya, M., 1988

[7] Samarskii A. A., Sobol I. M., “Primery chislennogo rascheta temperaturnykh voln”, Zhurn. vychisl. matem. i matem. fiz., 3:4 (1963), 703–719

[8] Tsypkin G. G., Techeniya s fazovymi perekhodami v poristykh sredakh, Fizmatlit, M., 2009

[9] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo MGU, M., 1999 | MR

[10] Mastepanov M., Sigsgaard C., Dlugokencky E. et al., “Large tundra methane burst during onset of freezing”, Nature, 456 (2008), 628–630 | DOI