Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 9-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gaussian homogeneous fields on two-dimensional Euclidean space are considered, whose correlation functions behave at zero in a power-law manner along each of the coordinates. Exact asymptotics are evaluated for the exceedances probabilities above infinitely growing levels on lattices with different densities along each coordinates and with infinitely decreased lattice density. Relations between the evaluated asymptotic behavior and corresponding ones in continuous time at various rates of lattice densities are discussed.
@article{VMUMM_2022_5_a1,
     author = {I. A. Kozik},
     title = {Extremes of homogeneous two-parametric {Gaussian} fields at discretization of parameters},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {9--17},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/}
}
TY  - JOUR
AU  - I. A. Kozik
TI  - Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 9
EP  - 17
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/
LA  - ru
ID  - VMUMM_2022_5_a1
ER  - 
%0 Journal Article
%A I. A. Kozik
%T Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 9-17
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/
%G ru
%F VMUMM_2022_5_a1
I. A. Kozik. Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 9-17. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/

[1] Piterbarg V. I., “Discrete and continuous time extremes of Gaussian processes”, Extremes, 7:2 (2004), 161–177 | DOI | MR

[2] Kozik I. A., Piterbarg V. I., “Bolshie vybrosy gaussovskikh nestatsionarnykh protsessov v diskretnom vremeni”, Fund. i prikl. matem., 22:2 (2018), 159–169 | MR

[3] Pickands J. III., “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR

[4] Piterbarg V. I., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Trans. Math. Monogr., 1, Amer. Math. Soc., 1996 | MR

[5] Piterbarg V. I., Dvadtsat lektsii o gaussovskikh protsessakh, MTsNMO, M., 2015

[6] Yakir B., Extremes in Random Fields — A Theory and its Applications, Wiley, 2013 | MR

[7] Debicki K., Michna Z., Rolski T., “Simulation of the asymptotic constant in some fluid models”, Stoch. Models, 19 (2003), 407–423 | DOI | MR

[8] Vanem E., “Literature survey on stochastic wave models”, Bayesian hierarchical space-time models with application to significant wave height, Ocean Engineering Oceanography, 2, Springer, Berlin–Heidelberg, 2013 | DOI | MR

[9] Krogstad H., Analysis of ocean wave measurements — Some recent studies, Norwegian University of Science and Technology, Trondheim, 2011