Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 9-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Gaussian homogeneous fields on two-dimensional Euclidean space are considered, whose correlation functions behave at zero in a power-law manner along each of the coordinates. Exact asymptotics are evaluated for the exceedances probabilities above infinitely growing levels on lattices with different densities along each coordinates and with infinitely decreased lattice density. Relations between the evaluated asymptotic behavior and corresponding ones in continuous time at various rates of lattice densities are discussed.
@article{VMUMM_2022_5_a1,
     author = {I. A. Kozik},
     title = {Extremes of homogeneous two-parametric {Gaussian} fields at discretization of parameters},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {9--17},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/}
}
TY  - JOUR
AU  - I. A. Kozik
TI  - Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 9
EP  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/
LA  - ru
ID  - VMUMM_2022_5_a1
ER  - 
%0 Journal Article
%A I. A. Kozik
%T Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 9-17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/
%G ru
%F VMUMM_2022_5_a1
I. A. Kozik. Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 9-17. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/