@article{VMUMM_2022_5_a1,
author = {I. A. Kozik},
title = {Extremes of homogeneous two-parametric {Gaussian} fields at discretization of parameters},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {9--17},
year = {2022},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/}
}
I. A. Kozik. Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 9-17. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a1/
[1] Piterbarg V. I., “Discrete and continuous time extremes of Gaussian processes”, Extremes, 7:2 (2004), 161–177 | DOI | MR
[2] Kozik I. A., Piterbarg V. I., “Bolshie vybrosy gaussovskikh nestatsionarnykh protsessov v diskretnom vremeni”, Fund. i prikl. matem., 22:2 (2018), 159–169 | MR
[3] Pickands J. III., “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR
[4] Piterbarg V. I., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Trans. Math. Monogr., 1, Amer. Math. Soc., 1996 | MR
[5] Piterbarg V. I., Dvadtsat lektsii o gaussovskikh protsessakh, MTsNMO, M., 2015
[6] Yakir B., Extremes in Random Fields — A Theory and its Applications, Wiley, 2013 | MR
[7] Debicki K., Michna Z., Rolski T., “Simulation of the asymptotic constant in some fluid models”, Stoch. Models, 19 (2003), 407–423 | DOI | MR
[8] Vanem E., “Literature survey on stochastic wave models”, Bayesian hierarchical space-time models with application to significant wave height, Ocean Engineering Oceanography, 2, Springer, Berlin–Heidelberg, 2013 | DOI | MR
[9] Krogstad H., Analysis of ocean wave measurements — Some recent studies, Norwegian University of Science and Technology, Trondheim, 2011