Solution to a linearized system of two-dimensional dynamics of viscous gas
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear system of partial differential equations approximately describing the dynamics of small perturbations of a nonstationary viscous barotropic gas in a neighborhood of the steady state is considered in the paper. Analytic formulas for the solution are obtained for initial conditions of special type, the asymptotics of the rate of convergence to the stationary solution is studied. Similar assertions are proved for a finite-difference approximation of the original problem constructed on grids of V. I. Lebedev. In addition, the presence of analytical formulas for the solution allows us to explain why a perturbation of velocity jump type decreased significantly better than that for a pressure jump. The obtained results form a basis for studying the problem of asymptotic stabilization of solutions to two-dimensional equations of gas dynamics with dissipation terms.
@article{VMUMM_2022_5_a0,
     author = {A. A. Kornev and V. S. Nazarov},
     title = {Solution to a linearized system of two-dimensional dynamics of viscous gas},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     year = {2022},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a0/}
}
TY  - JOUR
AU  - A. A. Kornev
AU  - V. S. Nazarov
TI  - Solution to a linearized system of two-dimensional dynamics of viscous gas
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 3
EP  - 8
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a0/
LA  - ru
ID  - VMUMM_2022_5_a0
ER  - 
%0 Journal Article
%A A. A. Kornev
%A V. S. Nazarov
%T Solution to a linearized system of two-dimensional dynamics of viscous gas
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 3-8
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a0/
%G ru
%F VMUMM_2022_5_a0
A. A. Kornev; V. S. Nazarov. Solution to a linearized system of two-dimensional dynamics of viscous gas. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2022), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2022_5_a0/

[1] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii, osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. I”, Zhurn. vychisl. matem. i matem. fiz., 3:4 (1964), 449–465

[2] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii, osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. II”, Zhurn. vychisl. matem. i matem. fiz., 4:4 (1964), 649–659

[3] Zhukov K. A., Kornev A. A., Popov A. V., “Ob uskorenii protsessa vykhoda na statsionar reshenii linearizovannoi sistemy dinamiki vyazkogo gaza, I”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 1, 26–32

[4] Zhukov K. A., Kornev A. A., Popov A. V., “Ob uskorenii protsessa vykhoda na statsionar reshenii linearizovannoi sistemy dinamiki vyazkogo gaza, II”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 3, 3–8

[5] Zhukov K. A., Kornev A. A., Lozhnikov M. A., Popov A. V., “Ob uskorenii protsessa vykhoda na statsionar reshenii sistemy vyazkogo gaza”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 2, 14–21 | MR

[6] Chizhonkov E. V., “Numerical aspects of one stabilization method”, Russ. J. Numer. Anal. Math. Modelling, 18:5 (2003), 363–376 | DOI | MR

[7] Fursikov A. V., “Stabiliziruemost kvazilineinogo parabolicheskogo uravneniya s pomoschyu granichnogo upravleniya s obratnoi svyazyu”, Matem. sb., 192:4 (2001), 115–160