Spectral properties of a differential operator with involution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 67-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article defines a class of regular differential operators of the first order, the main part of which contains the involution operator and non-constant coefficient functions. We sketch a scheme for proving the unconditional basis property of the eigen and associated functions of regular differential operators of this type under some additional conditions. Examples of operators for which root functions do not form a basis are constructed.
@article{VMUMM_2022_4_a9,
     author = {Ya. A. Granilshchikova and A. A. Shkalikov},
     title = {Spectral properties of a differential operator with involution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     year = {2022},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/}
}
TY  - JOUR
AU  - Ya. A. Granilshchikova
AU  - A. A. Shkalikov
TI  - Spectral properties of a differential operator with involution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 67
EP  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/
LA  - ru
ID  - VMUMM_2022_4_a9
ER  - 
%0 Journal Article
%A Ya. A. Granilshchikova
%A A. A. Shkalikov
%T Spectral properties of a differential operator with involution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 67-71
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/
%G ru
%F VMUMM_2022_4_a9
Ya. A. Granilshchikova; A. A. Shkalikov. Spectral properties of a differential operator with involution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/

[1] Kopzhassarova A. A., Lukashov A. L., Sarsenbi A. M., “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution”, Abstr. Appl. Anal., 2012 (2012), 590781 | MR | Zbl

[2] Kurdyumov V. P., Khromov A. P., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii funktsionalno-differentsialnogo uravneniya s operatorom otrazheniya”, Differents. uravneniya, 44:2 (2008), 203–212 | MR | Zbl

[3] Tojo F., Cabada A., “Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions”, J. Math. Anal. and Appl., 412 (2014), 529–546 | DOI | MR | Zbl

[4] Burlutskaya M. Sh., Funktsionalno-differentsialnye operatory s involyutsiei i ikh prilozheniya, Dokt. dis., M., 2019

[5] Kopzhassarova A. A., Sarsenbi A. M., “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstr. Appl. Anal., 2012 (2012), 576843 | MR | Zbl

[6] Sarsenbi A. M., “Bezuslovnye bazisy, svyazannye s neklassicheskim differentsialnym operatorom vtorogo poryadka”, Differents. uravneniya, 46:4 (2010), 506–511 | MR | Zbl

[7] Sadybekov M. A., Sarsenbi A. M., “Kriterii bazisnosti cistemy sobstvennykh funktsii operatora kratnogo differentsirovaniya s involyutsiei”, Differents. uravneniya, 48:8 (2012), 1126–1132 | Zbl

[8] Kritskov L. V., Sarsenbi A. M., “Spektralnye svoistva odnoi nelokalnoi zadachi dlya differentsialnogo uravneniya vtorogo poryadka s involyutsiei”, Differents. uravneniya, 51:8 (2015), 990–996 | MR | Zbl

[9] Kurdyumov V. P., “O bazisakh Rissa iz sobstvennykh funktsii differentsialnogo operatora vtorogo poryadka s involyutsiei i integralnymi kraevymi usloviyami”, Izv. Saratov. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 15:4 (2015), 392–405 | MR | Zbl

[10] Vladykina V. E., “Spektralnye kharakteristiki operatora Shturma–Liuvillya pri minimalnykh usloviyakh na gladkost koeffitsientov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 6, 23–28 | MR | Zbl

[11] Vladykina V. E., Shkalikov A. A., “Spektralnye svoistva obyknovennykh differentsialnykh operatorov s involyutsiei”, Dokl. RAN, 484:1 (2019), 12–17 | MR | Zbl

[12] Vladykina V. E., Shkalikov A. A., “Regulyarnye obyknovennye differentsialnye operatory s involyutsiei”, Matem. zametki, 6:5 (2019), 643–659 | MR

[13] Vladykina V. E., Otsenki i asimptotiki sobstvennykh funktsii obyknovennykh differentsialnykh operatorov, Kand. dis., M., 2021

[14] Shkalikov A. A., “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, Uspekhi matem. nauk, 71:5 (2016), 113–174 | MR | Zbl