Spectral properties of a differential operator with involution
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 67-71
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article defines a class of regular differential operators of the first order, the main part of which contains the involution operator and non-constant coefficient functions. We sketch a scheme for proving the unconditional basis property of the eigen and associated functions of regular differential operators of this type under some additional conditions. Examples of operators for which root functions do not form a basis are constructed.
			
            
            
            
          
        
      @article{VMUMM_2022_4_a9,
     author = {Ya. A. Granilshchikova and A. A. Shkalikov},
     title = {Spectral properties of a differential operator with involution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/}
}
                      
                      
                    TY - JOUR AU - Ya. A. Granilshchikova AU - A. A. Shkalikov TI - Spectral properties of a differential operator with involution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 67 EP - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/ LA - ru ID - VMUMM_2022_4_a9 ER -
Ya. A. Granilshchikova; A. A. Shkalikov. Spectral properties of a differential operator with involution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/
