@article{VMUMM_2022_4_a9,
author = {Ya. A. Granilshchikova and A. A. Shkalikov},
title = {Spectral properties of a differential operator with involution},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {67--71},
year = {2022},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/}
}
TY - JOUR AU - Ya. A. Granilshchikova AU - A. A. Shkalikov TI - Spectral properties of a differential operator with involution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 67 EP - 71 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/ LA - ru ID - VMUMM_2022_4_a9 ER -
Ya. A. Granilshchikova; A. A. Shkalikov. Spectral properties of a differential operator with involution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/
[1] Kopzhassarova A. A., Lukashov A. L., Sarsenbi A. M., “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution”, Abstr. Appl. Anal., 2012 (2012), 590781 | MR | Zbl
[2] Kurdyumov V. P., Khromov A. P., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii funktsionalno-differentsialnogo uravneniya s operatorom otrazheniya”, Differents. uravneniya, 44:2 (2008), 203–212 | MR | Zbl
[3] Tojo F., Cabada A., “Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions”, J. Math. Anal. and Appl., 412 (2014), 529–546 | DOI | MR | Zbl
[4] Burlutskaya M. Sh., Funktsionalno-differentsialnye operatory s involyutsiei i ikh prilozheniya, Dokt. dis., M., 2019
[5] Kopzhassarova A. A., Sarsenbi A. M., “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstr. Appl. Anal., 2012 (2012), 576843 | MR | Zbl
[6] Sarsenbi A. M., “Bezuslovnye bazisy, svyazannye s neklassicheskim differentsialnym operatorom vtorogo poryadka”, Differents. uravneniya, 46:4 (2010), 506–511 | MR | Zbl
[7] Sadybekov M. A., Sarsenbi A. M., “Kriterii bazisnosti cistemy sobstvennykh funktsii operatora kratnogo differentsirovaniya s involyutsiei”, Differents. uravneniya, 48:8 (2012), 1126–1132 | Zbl
[8] Kritskov L. V., Sarsenbi A. M., “Spektralnye svoistva odnoi nelokalnoi zadachi dlya differentsialnogo uravneniya vtorogo poryadka s involyutsiei”, Differents. uravneniya, 51:8 (2015), 990–996 | MR | Zbl
[9] Kurdyumov V. P., “O bazisakh Rissa iz sobstvennykh funktsii differentsialnogo operatora vtorogo poryadka s involyutsiei i integralnymi kraevymi usloviyami”, Izv. Saratov. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 15:4 (2015), 392–405 | MR | Zbl
[10] Vladykina V. E., “Spektralnye kharakteristiki operatora Shturma–Liuvillya pri minimalnykh usloviyakh na gladkost koeffitsientov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 6, 23–28 | MR | Zbl
[11] Vladykina V. E., Shkalikov A. A., “Spektralnye svoistva obyknovennykh differentsialnykh operatorov s involyutsiei”, Dokl. RAN, 484:1 (2019), 12–17 | MR | Zbl
[12] Vladykina V. E., Shkalikov A. A., “Regulyarnye obyknovennye differentsialnye operatory s involyutsiei”, Matem. zametki, 6:5 (2019), 643–659 | MR
[13] Vladykina V. E., Otsenki i asimptotiki sobstvennykh funktsii obyknovennykh differentsialnykh operatorov, Kand. dis., M., 2021
[14] Shkalikov A. A., “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, Uspekhi matem. nauk, 71:5 (2016), 113–174 | MR | Zbl