Spectral properties of a differential operator with involution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 67-71

Voir la notice de l'article provenant de la source Math-Net.Ru

The article defines a class of regular differential operators of the first order, the main part of which contains the involution operator and non-constant coefficient functions. We sketch a scheme for proving the unconditional basis property of the eigen and associated functions of regular differential operators of this type under some additional conditions. Examples of operators for which root functions do not form a basis are constructed.
@article{VMUMM_2022_4_a9,
     author = {Ya. A. Granilshchikova and A. A. Shkalikov},
     title = {Spectral properties of a differential operator with involution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/}
}
TY  - JOUR
AU  - Ya. A. Granilshchikova
AU  - A. A. Shkalikov
TI  - Spectral properties of a differential operator with involution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 67
EP  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/
LA  - ru
ID  - VMUMM_2022_4_a9
ER  - 
%0 Journal Article
%A Ya. A. Granilshchikova
%A A. A. Shkalikov
%T Spectral properties of a differential operator with involution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 67-71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/
%G ru
%F VMUMM_2022_4_a9
Ya. A. Granilshchikova; A. A. Shkalikov. Spectral properties of a differential operator with involution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a9/