@article{VMUMM_2022_4_a8,
author = {E. A. Reznichenko},
title = {Continuity of the inverse in groups},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {63--67},
year = {2022},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/}
}
E. A. Reznichenko. Continuity of the inverse in groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/
[1] Montgomery D., “Continuity in topological groups”, Bull. Amer. Math. Soc., 42 (1936), 879–882 | DOI | MR
[2] Ellis R., “A note on the continuity of the inverse”, Proc. Amer. Math. Soc., 8 (1957), 372–373 | DOI | MR | Zbl
[3] Zelazko W., “A theorem on $B_0$ division algebras”, Bull. Acad. Pol. Sci., 8 (1960), 373–375 | MR | Zbl
[4] Brand N., “Another note on the continuity of the inverse”, Arch. Math., 39 (1982), 241–245 | DOI | MR | Zbl
[5] Pfister H., “Continuity of the inverse”, Proc. Amer. Math. Soc., 95 (1985), 312–314 | DOI | MR | Zbl
[6] Reznichenko E. A., “Extensions of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups”, Topol. Appl., 59 (1994), 233–244 | DOI | MR | Zbl
[7] Bouziad A., “Every Čech-analytic Baire semitopological group is a topological group”, Proc. Amer. Math. Soc., 24:3 (1998), 953–959 | DOI | MR
[8] Arhangel'skii A. V., Reznichenko E. A., “Paratopological and semitopological groups versus topological groups”, Topol. Appl., 151 (2005), 107–119 | DOI | MR | Zbl
[9] Choquet G., Lectures on Analysis, v. I, W. A. Benjamin Inc, N.Y., 1969 | MR
[10] Telgarsky R., “Topological games: On the 50th anniversary of the Banach–Mazur game”, Rocky Mount. J. Math., 17 (1987), 227–276 | MR | Zbl
[11] Saint Raymond J., “Jeux topologiques et espaces de Namioka”, Proc. Amer. Math. Soc., 87 (1983), 499–504 | DOI | MR | Zbl