Continuity of the inverse in groups
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 63-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We define $\Delta$-Baire spaces. If a paratopological group $G$ is $\Delta$-Baire space, then $G$ is a topological group. Locally pseudocompact spaces, Baire $p$-spaces, Baire $\Sigma$-spaces, products of Čech-complete spaces are $\Delta$-Baire spaces.
@article{VMUMM_2022_4_a8,
     author = {E. A. Reznichenko},
     title = {Continuity of the inverse in groups},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/}
}
TY  - JOUR
AU  - E. A. Reznichenko
TI  - Continuity of the inverse in groups
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 63
EP  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/
LA  - ru
ID  - VMUMM_2022_4_a8
ER  - 
%0 Journal Article
%A E. A. Reznichenko
%T Continuity of the inverse in groups
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 63-67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/
%G ru
%F VMUMM_2022_4_a8
E. A. Reznichenko. Continuity of the inverse in groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/