Continuity of the inverse in groups
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 63-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define $\Delta$-Baire spaces. If a paratopological group $G$ is $\Delta$-Baire space, then $G$ is a topological group. Locally pseudocompact spaces, Baire $p$-spaces, Baire $\Sigma$-spaces, products of Čech-complete spaces are $\Delta$-Baire spaces.
@article{VMUMM_2022_4_a8,
     author = {E. A. Reznichenko},
     title = {Continuity of the inverse in groups},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     year = {2022},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/}
}
TY  - JOUR
AU  - E. A. Reznichenko
TI  - Continuity of the inverse in groups
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 63
EP  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/
LA  - ru
ID  - VMUMM_2022_4_a8
ER  - 
%0 Journal Article
%A E. A. Reznichenko
%T Continuity of the inverse in groups
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 63-67
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/
%G ru
%F VMUMM_2022_4_a8
E. A. Reznichenko. Continuity of the inverse in groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a8/

[1] Montgomery D., “Continuity in topological groups”, Bull. Amer. Math. Soc., 42 (1936), 879–882 | DOI | MR

[2] Ellis R., “A note on the continuity of the inverse”, Proc. Amer. Math. Soc., 8 (1957), 372–373 | DOI | MR | Zbl

[3] Zelazko W., “A theorem on $B_0$ division algebras”, Bull. Acad. Pol. Sci., 8 (1960), 373–375 | MR | Zbl

[4] Brand N., “Another note on the continuity of the inverse”, Arch. Math., 39 (1982), 241–245 | DOI | MR | Zbl

[5] Pfister H., “Continuity of the inverse”, Proc. Amer. Math. Soc., 95 (1985), 312–314 | DOI | MR | Zbl

[6] Reznichenko E. A., “Extensions of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups”, Topol. Appl., 59 (1994), 233–244 | DOI | MR | Zbl

[7] Bouziad A., “Every Čech-analytic Baire semitopological group is a topological group”, Proc. Amer. Math. Soc., 24:3 (1998), 953–959 | DOI | MR

[8] Arhangel'skii A. V., Reznichenko E. A., “Paratopological and semitopological groups versus topological groups”, Topol. Appl., 151 (2005), 107–119 | DOI | MR | Zbl

[9] Choquet G., Lectures on Analysis, v. I, W. A. Benjamin Inc, N.Y., 1969 | MR

[10] Telgarsky R., “Topological games: On the 50th anniversary of the Banach–Mazur game”, Rocky Mount. J. Math., 17 (1987), 227–276 | MR | Zbl

[11] Saint Raymond J., “Jeux topologiques et espaces de Namioka”, Proc. Amer. Math. Soc., 87 (1983), 499–504 | DOI | MR | Zbl