Peculiarities in applying the theory of elastoplastic processes at complex loading along curvilinear deformation trajectories
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 48-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The approach to mathematical modeling of complex loading processes is based on the two ideas given by A.A. Ilyushin. One of them is called the three-term formula of A.A. Ilyushin and sets the type of the differential dependence that connects the stress and strain deviator vectors in two- or-three-dimensional complex loading processes, and the second one determines the type of the five-dimensional deformation trajectory of constant curvatures. The development of these ideas led to a new constitutive equation and to a new approach to mathematical modeling of complex loading processes. For the analysis of complex loading processes with deformation trajectories of zero curvature, Vasin's material functions were introduced. These functions are at the center of the mathematical model. They are used for the representations of functionals and formulas for dissipative stresses and for an explicit representation of the stress vector. In this paper we study the features of applying the new approach to the processes with constant curvature trajectories.
@article{VMUMM_2022_4_a6,
     author = {I. N. Molodtsov},
     title = {Peculiarities in applying the theory of elastoplastic processes at complex loading along curvilinear deformation trajectories},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--55},
     year = {2022},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a6/}
}
TY  - JOUR
AU  - I. N. Molodtsov
TI  - Peculiarities in applying the theory of elastoplastic processes at complex loading along curvilinear deformation trajectories
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 48
EP  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a6/
LA  - ru
ID  - VMUMM_2022_4_a6
ER  - 
%0 Journal Article
%A I. N. Molodtsov
%T Peculiarities in applying the theory of elastoplastic processes at complex loading along curvilinear deformation trajectories
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 48-55
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a6/
%G ru
%F VMUMM_2022_4_a6
I. N. Molodtsov. Peculiarities in applying the theory of elastoplastic processes at complex loading along curvilinear deformation trajectories. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 48-55. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a6/

[1] Molodtsov I. N., “Prikladnye voprosy teorii uprugoplasticheskikh protsessov A.A. Ilyushina”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 5, 33–38 | Zbl

[2] Ilyushin A. A., Plastichnost, Izd-vo AN SSSR, M., 1963

[3] Molodtsov I. N., “Teoriya pyatimernykh uprugoplasticheskikh protsessov srednei krivizny”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 2, 39–45

[4] Zubchaninov V. G., Mekhanika protsessov sploshnykh sred, Fizmatlit, M., 2010

[5] Vavakin A. S., Vasin R. A., Viktorov V. V., Shirov R. I., Eksperimentalnoe issledovanie uprugoplasticheskogo deformirovaniya stali pri slozhnom nagruzhenii po krivolineinym prostranstvennym traektoriyam deformatsii, Dep. v VINITI 16.10.86. No 7298-V86, M., 1986

[6] Molodtsov I. N., Babaeva D. O., “Nekotorye matematicheskie modeli uprugoplasticheskikh protsessov slozhnogo nagruzheniya”, Intellektualnye sistemy. Teoriya i prilozheniya, 22:2 (2018), 19–36