@article{VMUMM_2022_4_a4,
author = {A. V. Romanov},
title = {A variational principle of {Lagrange} of the micropolar theory of elasticity in the case of transversely isotropic medium},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {35--39},
year = {2022},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a4/}
}
TY - JOUR AU - A. V. Romanov TI - A variational principle of Lagrange of the micropolar theory of elasticity in the case of transversely isotropic medium JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 35 EP - 39 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a4/ LA - ru ID - VMUMM_2022_4_a4 ER -
%0 Journal Article %A A. V. Romanov %T A variational principle of Lagrange of the micropolar theory of elasticity in the case of transversely isotropic medium %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2022 %P 35-39 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a4/ %G ru %F VMUMM_2022_4_a4
A. V. Romanov. A variational principle of Lagrange of the micropolar theory of elasticity in the case of transversely isotropic medium. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2022), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2022_4_a4/
[1] Pobedrya B. E., Chislennye metody v teorii uprugosti i plastichnosti, Ucheb. posobie, 2-e izd., Izd-vo MGU, M., 1995 | MR
[2] Berdichevskii V. P., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1983 | MR
[3] Novatskii V., Teoriya uprugosti, Mir, M., 1975
[4] Eringen A. C., Microcontinuum Field Theories, v. 1, Foundation and Solids, Springer-Verlag, N.Y., 1999 | MR | Zbl
[5] Lakes R., “Cosserat micromechanics of structured media: Experimental methods”, Proc. Amer. Soc. Composites. 3rd Technical Conference (Sept. 25–29, Seatle, 1988), 505–516
[6] Nikabadze M. U., Razvitie metoda ortogonalnykh polinomov v mekhanike mikropolyarnykh i klassicheskikh uprugikh tonkikh tel, Izd-vo Popechitelskogo soveta mekhaniko-matematicheskogo fakulteta MGU im. M.V. Lomonosova, M., 2014 https://istina.msu.ru/publications/book/6738800/
[7] Nikabadze M., Ulukhanyan A., “Some variational principles in the three-dimensional micropolar theories of solids and thin solids”, Theoretical Analyses, Computations, and Experiments of Multiscale Materials, Advanced Structured Materials, 175, Switzerland, 2022, 193–251 | DOI | MR
[8] Nikabadze M., Ulukhanyan A., “On some variational principles in micropolar theories of single-layer thin bodies”, Continuum Mechanics and Thermodynamics, 2022 | DOI | MR
[9] Nikabadze M., Ulukhanyan A., “Generalized Reissner-type variational principle in the micropolar theories of multilayer thin bodies with one small size”, Continuum Mechanics and Thermodynamics, 34:2 (2022) | DOI | MR
[10] Nikabadze M. U., “Topics on tensor calculus with applications to Mechanics”, J. Math. Sci., 225:1 (2017) | DOI | MR | Zbl
[11] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[12] Zienkiewicz O. C., Taylor R. L., Fox D. D., The Finite Element Method for Solid Mechanics, 7th ed., Butterworth-Heinemann, Oxford, 2014 | MR | Zbl