Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 46-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

From the standpoint of the linearized stability theory, two eigenvalue problems for the Orr–Sommerfeld equation with two groups of boundary conditions having a certain mechanical meaning are considered. On the basis of the integral relations method operating with quadratic functionals, the stability parameter, which is a real part of the spectral parameter, is estimated. The technique of the method involves the application of the Friedrichs inequality for various classes of complex-valued functions. Using the minimizing property of the first positive eigenvalues in the corresponding problems, the values of the constants in some Friedrichs inequalities are increased, which entails the strengthening of the stability sufficient integral estimates for plane-parallel shear flows in a plane layer.
@article{VMUMM_2022_3_a8,
     author = {D. V. Georgievskii},
     title = {Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--50},
     year = {2022},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a8/}
}
TY  - JOUR
AU  - D. V. Georgievskii
TI  - Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 46
EP  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a8/
LA  - ru
ID  - VMUMM_2022_3_a8
ER  - 
%0 Journal Article
%A D. V. Georgievskii
%T Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 46-50
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a8/
%G ru
%F VMUMM_2022_3_a8
D. V. Georgievskii. Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a8/

[1] Betchov R., Criminale W.O., Stability of Parallel Flows, Acad. Press, N.Y.–L., 1967

[2] Georgievskii D.V., “Asimptotiki sobstvennykh znachenii v zadache Orra–Zommerfelda dlya malykh skorostei nevozmuschennogo techeniya”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 496 (2021), 26–29 | Zbl

[3] Kozyrev O.R., Stepanyants Yu.A., “Metod integralnykh sootnoshenii v lineinoi teorii gidrodinamicheskoi ustoichivosti”, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 25, VINITI, M., 1991, 3–89

[4] Joseph D.D., “Eigenvalue bounds for the Orr–Sommerfeld equation. Part 1”, J. Fluid Mech., 33:3 (1968), 617–621 | DOI | MR | Zbl

[5] Joseph D.D., “Eigenvalue bounds for the Orr–Sommerfeld equation. Part 2”, J. Fluid Mech., 36:4 (1969), 721–734 | DOI | MR | Zbl

[6] Yih C.-S., “Note on eigenvalue bounds for the Orr–Sommerfeld equation”, J. Fluid Mech., 38:2 (1969), 273–278 | DOI | MR

[7] Rektorys K., Variational Methods in Mathematics, Science and Engineering, Reidel, Dordrecht–Boston, 1980 | MR | MR | Zbl

[8] Georgievskii D.V., Izbrannye zadachi mekhaniki sploshnoi sredy, LENAND, M., 2018