@article{VMUMM_2022_3_a8,
author = {D. V. Georgievskii},
title = {Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--50},
year = {2022},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a8/}
}
TY - JOUR AU - D. V. Georgievskii TI - Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 46 EP - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a8/ LA - ru ID - VMUMM_2022_3_a8 ER -
D. V. Georgievskii. Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a8/
[1] Betchov R., Criminale W.O., Stability of Parallel Flows, Acad. Press, N.Y.–L., 1967
[2] Georgievskii D.V., “Asimptotiki sobstvennykh znachenii v zadache Orra–Zommerfelda dlya malykh skorostei nevozmuschennogo techeniya”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 496 (2021), 26–29 | Zbl
[3] Kozyrev O.R., Stepanyants Yu.A., “Metod integralnykh sootnoshenii v lineinoi teorii gidrodinamicheskoi ustoichivosti”, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 25, VINITI, M., 1991, 3–89
[4] Joseph D.D., “Eigenvalue bounds for the Orr–Sommerfeld equation. Part 1”, J. Fluid Mech., 33:3 (1968), 617–621 | DOI | MR | Zbl
[5] Joseph D.D., “Eigenvalue bounds for the Orr–Sommerfeld equation. Part 2”, J. Fluid Mech., 36:4 (1969), 721–734 | DOI | MR | Zbl
[6] Yih C.-S., “Note on eigenvalue bounds for the Orr–Sommerfeld equation”, J. Fluid Mech., 38:2 (1969), 273–278 | DOI | MR
[7] Rektorys K., Variational Methods in Mathematics, Science and Engineering, Reidel, Dordrecht–Boston, 1980 | MR | MR | Zbl
[8] Georgievskii D.V., Izbrannye zadachi mekhaniki sploshnoi sredy, LENAND, M., 2018