Refined bounds on Shannon’s function for complexity of circuits of functional elements
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 32-40
Voir la notice de l'article provenant de la source Math-Net.Ru
Earlier, the author proposed rather general approaches and methods for obtaining high accuracy and close to high accuracy asymptotic bounds on Shannon's function for complexity in various classes of circuits. Most of the results obtained with their aid were published in a number of papers, except perhaps for the close to the high accuracy asymptotic bounds on Shannon's function for the complexity of circuits without restrictions on their structure. This paper fills this gap and presents a modified and simplified version of one of the above-mentioned methods, which, nevertheless, allows one to obtain bounds with the required accuracy.
@article{VMUMM_2022_3_a6,
author = {S. A. Lozhkin},
title = {Refined bounds on {Shannon{\textquoteright}s} function for complexity of circuits of functional elements},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {32--40},
publisher = {mathdoc},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a6/}
}
TY - JOUR AU - S. A. Lozhkin TI - Refined bounds on Shannon’s function for complexity of circuits of functional elements JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 32 EP - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a6/ LA - ru ID - VMUMM_2022_3_a6 ER -
S. A. Lozhkin. Refined bounds on Shannon’s function for complexity of circuits of functional elements. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 32-40. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a6/