The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into affine subspaces of dimension $k$ are presented in the paper. Apart from their immediate interest, these bounds are important for estimating the number of bent functions generated by some constructions.
@article{VMUMM_2022_3_a4,
     author = {I. P. Baksova and Yu. V. Tarannikov},
     title = {The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--25},
     year = {2022},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a4/}
}
TY  - JOUR
AU  - I. P. Baksova
AU  - Yu. V. Tarannikov
TI  - The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 21
EP  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a4/
LA  - ru
ID  - VMUMM_2022_3_a4
ER  - 
%0 Journal Article
%A I. P. Baksova
%A Yu. V. Tarannikov
%T The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 21-25
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a4/
%G ru
%F VMUMM_2022_3_a4
I. P. Baksova; Yu. V. Tarannikov. The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 21-25. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a4/

[1] Logachev O.A, Salnikov A.A, Smyshlyaev S.V., Yaschenko V.V., Bulevy funktsii v teorii kodirovaniya i kriptologii, LENAND, M., 2015

[2] Tokareva N.N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Academic Publishing, Saarbrucken, Germany, 2011

[3] Carlet C., Boolean functions for cryptography and coding theory, Cambridge University Press, Cambridge, 2020 | Zbl

[4] Carlet C., Mesnager S., “Four decades of research on bent functions”, Des. Codes Cryptogr., 78:1 (2016), 5–50 | DOI | MR | Zbl

[5] Mesnager S., Bent functions. Fundamentals and results, Springer, Cham, 2016 | MR | Zbl

[6] Agievich S., “Bent rectangles”, Proc. NATO advanced study Institute on Boolean functions in cryptology and information security, NATO Science for Peace and Security. Series D: Information and Communication Security, 18, Amsterdam, 2008, 3–22 | MR | Zbl

[7] Baksova I.P., Tarannikov Yu.V., “Ob odnoi konstruktsii bent-funktsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 27:1 (2020), 64–66

[8] Potapov V.N., Taranenko A.A., Tarannikov Yu.V., Asymptotic bounds on numbers of bent functions and partitions of the Boolean hypercube into linear and affine subspaces, arXiv: 2108.00232

[9] Seelinger G., Sissokho P., Spence L., Eynden C.V., “Partitions of $V(n,q)$ into $2$- and $s$-dimensional subspaces”, J. Combin. Designs, 20 (2012), 467–482 | DOI | MR | Zbl

[10] Akman F., Sissokho P., “Reconfiguration of subspace partitions”, J. Combin. Designs, 30 (2022), 5–18 | DOI | MR