On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 18-20
Cet article a éte moissonné depuis la source Math-Net.Ru
For characteristic functions of spheres, an asymptotics for the complexity of their implementation by circuits of functional elements in the basis $\{\&,\vee,-\}$ is established; the characteristic function of a sphere with the center at the vertex $\tilde\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_1,\ldots,\sigma_n\in\{0,1\}$, is the Boolean function equal to one on all those and only those sets of values of variables each of which differs from the vertex $\tilde\sigma$ only in one digit.
@article{VMUMM_2022_3_a3,
author = {N. P. Red'kin},
title = {On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {18--20},
year = {2022},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a3/}
}
TY - JOUR AU - N. P. Red'kin TI - On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 18 EP - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a3/ LA - ru ID - VMUMM_2022_3_a3 ER -
%0 Journal Article %A N. P. Red'kin %T On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2022 %P 18-20 %N 3 %U http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a3/ %G ru %F VMUMM_2022_3_a3
N. P. Red'kin. On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 18-20. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a3/
[1] Lupanov O.B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, M., 1984
[2] Redkin N.P., “Minimalnye kontaktnye skhemy dlya kharakteristicheskikh funktsii sfer”, Diskretn. matem., 32:3 (2020), 68–75 | MR
[3] Grinchuk M.I., “O monotonnoi slozhnosti porogovykh funktsii”, Metody diskretnogo analiza v teorii grafov i slozhnosti, 1992, no. 52, 41–48 | MR
[4] Redkin N.P., “Minimalnye kontaktnye skhemy dlya simmetricheskikh porogovykh funktsii”, Matem. zametki, 108:3 (2020), 397–411 | MR | Zbl
[5] Redkin N.P., “Dokazatelstvo minimalnosti nekotorykh skhem iz funktsionalnykh elementov”, Problemy kibernetiki, 23, Nauka, M., 1970, 83–101 | MR