On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 18-20

Voir la notice de l'article provenant de la source Math-Net.Ru

For characteristic functions of spheres, an asymptotics for the complexity of their implementation by circuits of functional elements in the basis $\{\,\vee,-\}$ is established; the characteristic function of a sphere with the center at the vertex $\tilde\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_1,\ldots,\sigma_n\in\{0,1\}$, is the Boolean function equal to one on all those and only those sets of values of variables each of which differs from the vertex $\tilde\sigma$ only in one digit.
@article{VMUMM_2022_3_a3,
     author = {N. P. Red'kin},
     title = {On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--20},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a3/}
}
TY  - JOUR
AU  - N. P. Red'kin
TI  - On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 18
EP  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a3/
LA  - ru
ID  - VMUMM_2022_3_a3
ER  - 
%0 Journal Article
%A N. P. Red'kin
%T On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 18-20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a3/
%G ru
%F VMUMM_2022_3_a3
N. P. Red'kin. On the complexity of implementation of characteristic functions of the spheres by circuits of functional elements. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 18-20. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a3/