On the motion of a rigid body with a fixed point in a flow of particles
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 58-68

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of motion of a rigid body with a fixed point in a free molecular flow of particles is considered. It is shown that the equations of motion of this body generalize the classical Euler–Poisson equations of motion of a heavy rigid body with a fixed point and they are represented in the form of the classical Euler–Poisson equations in the case when the surface of the body in a flow of particles is a sphere. The existence of first integrals in the considered system is discussed.
@article{VMUMM_2022_3_a10,
     author = {M. M. Gadzhiev and A. S. Kuleshov},
     title = {On the motion of a rigid body with a fixed point in a flow of particles},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--68},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a10/}
}
TY  - JOUR
AU  - M. M. Gadzhiev
AU  - A. S. Kuleshov
TI  - On the motion of a rigid body with a fixed point in a flow of particles
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 58
EP  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a10/
LA  - ru
ID  - VMUMM_2022_3_a10
ER  - 
%0 Journal Article
%A M. M. Gadzhiev
%A A. S. Kuleshov
%T On the motion of a rigid body with a fixed point in a flow of particles
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 58-68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a10/
%G ru
%F VMUMM_2022_3_a10
M. M. Gadzhiev; A. S. Kuleshov. On the motion of a rigid body with a fixed point in a flow of particles. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 58-68. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a10/