Some criteria of capacitive type of a noncompact Riemannian manifold
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 61-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A fairly general concept of an integral capacity on a Riemannian manifold is considered, which includes the concepts of capacity known for the geometric theory of function such as the classical and conformal capacities. In terms of this general capacity, as in the case of the classical capacity, the concept of capacitive type of Riemannian manifold is defined. In this paper, we present some integral criteria of the capacitive type of a non-compact Riemannian manifold, which complement and, in certain cases, strengthen known criteria of the classical capacitive type of a Riemannian manifold.
@article{VMUMM_2022_2_a8,
     author = {T. R. Igonina and V. M. Keselman and O. R. Paraskevopulo},
     title = {Some criteria of capacitive type of a noncompact {Riemannian} manifold},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--64},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a8/}
}
TY  - JOUR
AU  - T. R. Igonina
AU  - V. M. Keselman
AU  - O. R. Paraskevopulo
TI  - Some criteria of capacitive type of a noncompact Riemannian manifold
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 61
EP  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a8/
LA  - ru
ID  - VMUMM_2022_2_a8
ER  - 
%0 Journal Article
%A T. R. Igonina
%A V. M. Keselman
%A O. R. Paraskevopulo
%T Some criteria of capacitive type of a noncompact Riemannian manifold
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 61-64
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a8/
%G ru
%F VMUMM_2022_2_a8
T. R. Igonina; V. M. Keselman; O. R. Paraskevopulo. Some criteria of capacitive type of a noncompact Riemannian manifold. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 61-64. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a8/

[1] Keselman V.M., “Obobschennaya emkost i svyazannye s nei kriterii tipa nekompaktnogo rimanova mnogoobraziya”, Tez. dokl. 5-i mezhdunar. konf., posvyaschennoi 95-letiyu so dnya rozhdeniya L.D. Kudryavtseva (Moskva, RUDN, 26–29 noyabrya 2018 g.), M., 2018, 63–64

[2] Keselman V.M., “Ponyatie i kriterii emkostnogo tipa nekompaktnogo rimanova mnogoobraziya na osnove obobschennoi emkosti”, Matematicheskaya fizika i kompyuternoe modelirovanie, 22:2 (2019), 21–32 | MR

[3] Choquet G., “Theory of capacities”, Ann. Inst Fourier, 5 (1954), 131–295 | DOI | MR

[4] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR

[5] Miklyukov V.M., Geometricheskii analiz, Volgograd, 2007

[6] Zorich V.A., Keselman V.M., “O konformnom tipe rimanova mnogoobraziya”, Funkts. anal. i ego pril., 30:2 (1996), 40–55 | MR | Zbl

[7] Alfors L., “K teorii poverkhnostei nalozheniya”, Uspekhi matem. nauk, 1939, no. 6, 222–250