Variation of the size of reachable region of second-order linear system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 47-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a linear time-invariant completely controllable second-order system, all the eigenvalues of this system are different and have negative real parts. The control is considered to be a scalar piecewise continuous function bounded in absolute value. The size of the reachable region is defined as the maximum absolute value of the coordinates of the points of the reachable region on the phase plane. A monotonic dependence of the size of the reachable region on the parameters of the system is shown.
@article{VMUMM_2022_2_a5,
     author = {D. I. Bugrov and M. I. Bugrova},
     title = {Variation of the size of reachable region of second-order linear system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {47--52},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a5/}
}
TY  - JOUR
AU  - D. I. Bugrov
AU  - M. I. Bugrova
TI  - Variation of the size of reachable region of second-order linear system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 47
EP  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a5/
LA  - ru
ID  - VMUMM_2022_2_a5
ER  - 
%0 Journal Article
%A D. I. Bugrov
%A M. I. Bugrova
%T Variation of the size of reachable region of second-order linear system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 47-52
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a5/
%G ru
%F VMUMM_2022_2_a5
D. I. Bugrov; M. I. Bugrova. Variation of the size of reachable region of second-order linear system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 47-52. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a5/

[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[2] Formalskii A.M., Upravlyaemost i ustoichivost sistem s ogranichennymi resursami, Nauka, M., 1974 | MR

[3] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977

[4] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988

[5] Aleksandrov V.V., Aleksandrova O.V., Prikhodko I.P., Temoltzi-Avila R., “O sinteze avtokolebanii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 3, 41–44 | MR

[6] Patsko V.S., Fedotov A.A., “Analiticheskoe opisanie mnozhestva dostizhimosti dlya mashiny Dubinsa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26, no. 1, 2020, 182–197 | MR

[7] Zhermolenko V.N., “K zadache B.V. Bulgakova o maksimalnom otklonenii kolebatelnoi sistemy vtorogo poryadka”, Vestn. Mosk. un-ta. Matem. Mekhan., 1980, no. 2, 87–91 | Zbl

[8] Ovseevich A.I., Tarabanko Yu.V., “Yavnye formuly dlya ellipsoidov, approksimiruyuschikh oblasti dostizhimosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 33–44 | Zbl

[9] Allen R.E., Clark A.A., Starek J.A., Pavone M., “A machine learning approach for real-time reachability analysis”, 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (Chicago, IL, USA, 2014), 2202–2208

[10] Aleksandrov V.V., Bugrov D.I., Zhermolenko V.N., Konovalenko I.S., “Mnozhestvo dostizhimosti i robastnaya ustoichivost vozmuschaemykh kolebatelnykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2021, no. 1, 67–71 | Zbl

[11] Sadovnichiy V.A., Alexandrov V.V., Lemak S.S., etc., “Robust Stability, Minimax Stabilization and Maximin Testing in Problems of Semi-Automatic Control”, Continuous and Distributed Systems II. Theory and Applications, Studies in Systems, Decision and Control, 30, Springer, 2015, 247–265 | DOI | MR | Zbl

[12] Zubov V.I., Kolebaniya v nelineinykh i upravlyaemykh sistemakh, SUDPROMGIZ, L., 1962

[13] Kharitonov V. L., “Ob asimptoticheskoi ustoichivosti polozheniya ravnovesiya semeistva sistem lineinykh differentsialnykh uravnenii”, Differents. uravneniya, 14:11 (1978), 2086–2088 | MR | Zbl

[14] Aleksandrov V.V., Bugrov D.I., Pilyugina S.K., “Oblast dostizhimosti lineinoi sistemy vtorogo poryadka s neopredelennostyu”, XII Vseros. s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki, v. 1, RITs BashGU, Ufa, 2019, 162–163