Variation of the size of reachable region of second-order linear system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 47-52

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear time-invariant completely controllable second-order system, all the eigenvalues of this system are different and have negative real parts. The control is considered to be a scalar piecewise continuous function bounded in absolute value. The size of the reachable region is defined as the maximum absolute value of the coordinates of the points of the reachable region on the phase plane. A monotonic dependence of the size of the reachable region on the parameters of the system is shown.
@article{VMUMM_2022_2_a5,
     author = {D. I. Bugrov and M. I. Bugrova},
     title = {Variation of the size of reachable region of second-order linear system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {47--52},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a5/}
}
TY  - JOUR
AU  - D. I. Bugrov
AU  - M. I. Bugrova
TI  - Variation of the size of reachable region of second-order linear system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 47
EP  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a5/
LA  - ru
ID  - VMUMM_2022_2_a5
ER  - 
%0 Journal Article
%A D. I. Bugrov
%A M. I. Bugrova
%T Variation of the size of reachable region of second-order linear system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 47-52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a5/
%G ru
%F VMUMM_2022_2_a5
D. I. Bugrov; M. I. Bugrova. Variation of the size of reachable region of second-order linear system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 47-52. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a5/