On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin–Voigt friction
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 23-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider an operator function being a symbol of the abstract integro-differential equation describing the oscillations of a viscoelastic tube. The operator-function spectra localization is determined in the paper and its resolvent norm is estimated in a domain free of spectral points.
@article{VMUMM_2022_2_a2,
     author = {Yu. A. Tikhonov},
     title = {On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with {Kelvin{\textendash}Voigt} friction},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--34},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a2/}
}
TY  - JOUR
AU  - Yu. A. Tikhonov
TI  - On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin–Voigt friction
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 23
EP  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a2/
LA  - ru
ID  - VMUMM_2022_2_a2
ER  - 
%0 Journal Article
%A Yu. A. Tikhonov
%T On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin–Voigt friction
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 23-34
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a2/
%G ru
%F VMUMM_2022_2_a2
Yu. A. Tikhonov. On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin–Voigt friction. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 23-34. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a2/

[1] Pivovarchik V.N., “Kraevaya zadacha, svyazannaya s kolebaniyami sterzhnya s vnutrennim i vneshnim treniem”, Vestn. Mosk. un-ta. Matem. Mekhan., 1987, no. 3, 68–71

[2] Miloslavskii A.I., “O spektre neustoichivosti operatornogo puchka”, Matem. zametki, 49:4 (1991), 88–94 | MR | Zbl

[3] Pipkin A.C., Gurtin M.E., “A general theory of heat conduction with finite wave speeds”, Arch. Ration. Mech. and Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[4] Vlasov V.V., Rautian N.A., Shamaev A.S., “Issledovanie operatornykh modelei, voznikayuschikh v zadachakh nasledstvennoi mekhaniki”, Sovremennaya matematika. Fundamentalnye napravleniya, 45, 2012, 43–61

[5] Vlasov V.V., Rautian N.A., “Spektralnyi analiz integrodifferentsialnykh uravnenii v gilbertovom prostranstve”, Sovremennaya matematika. Fundamentalnye napravleniya, 62, 2012, 53–71

[6] Vlasov V.V., Rautian N.A., “O svoistvakh reshenii integrodifferentsialnykh uravnenii, voznikayuschikh v teorii teplomassoobmena”, Tr. Mosk. matem. o-va, 75, no. 2, 2014, 219–243 | Zbl

[7] Vlasov V.V., Rautian N.A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, Maks Press, M., 2016

[8] Vlasov V.V., Rautian N.A., “Spektralnyi analiz integrodifferentsialnykh uravnenii v gilbertovom prostranstve”, Sovremennaya matematika. Fundamentalnye napravleniya, 62, 2016, 53–71

[9] Vlasov V.V., Rautian N.A., “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Sovremennaya matematika. Fundamentalnye napravleniya, 58, 2015, 22–42

[10] Vlasov V.V., Rautian N.A., “Spektralnyi analiz i predstavlenie reshenii integrodifferentsialnykh uravnenii s drobno-eksponentsialnymi yadrami”, Tr. Mosk. matem. o-va, 80, no. 2, 2019, 197–220 | Zbl

[11] Davydov A.V., “Spektralnyi analiz integrodifferentsialnykh operatorov, voznikayuschikh pri izuchenii flattera vyazkouprugoi plastiny”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 2, 15–22 | Zbl

[12] Lancaster P., Shkalikov A., “Damped vibrations of beams and related spectral problems”, Can. Appl. Math. Quart., 2:1 (1994), 45–90 | MR | Zbl

[13] Shkalikov A.A., Griniv R.O., “O puchke operatorov, voznikayuschem v zadache o kolebaniyakh sterzhnya s vnutrennim treniem”, Matem. zametki, 56:2 (1994), 114–131 | Zbl

[14] Pandolfi L., Ivanov S., “Heat equations with memory: lack of controllability to the rest”, J. Math. and Appl., 355 (2009), 1–11 | MR | Zbl

[15] Pandolfi L., “The controllability of the Gurtin–Pipkin equations: a cosine operator approach”, Appl. Math. and Optim., 52 (2005), 143–165 | DOI | MR | Zbl

[16] Rivera J.E.M., Naso M.G., “On the decay of the energy for systems with memory and indefinite dissipation”, Asympt. Anal., 49 (2006), 189–204 | MR | Zbl

[17] Amendola G., Fabrizio M., Golden J.M., Thermodynamics of materials with memory, Springer, Boston, 2012 | MR | Zbl

[18] Dafermos C.M., “Asymptotic stability in viscoelasticity”, Arch. Ration. Mech. and Anal., 37 (1970), 297–308 | DOI | MR | Zbl

[19] Fabrizio M., Giorgi C., Pata V., “A new approach to equations with memory”, Arch. Ration. Mech. and Anal., 198 (2010), 189–232 | DOI | MR | Zbl

[20] Markus A.S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtinitsa, Kishinev, 1986

[21] Karateodori K., Konformnoe otobrazhenie, ONTI, M., 1934

[22] Eremenko A., Ivanov S., “Spectra of Gurtin–Pipkin type equations”, SIAM J. Math. Anal., 43 (2011), 2296–2306 | DOI | MR | Zbl

[23] Davydov A.V., Tikhonov Yu.A., “Issledovanie operatornykh modelei Kelvina–Foigta”, Differents. uravneniya, 54:12 (2018), 1663–1677 | Zbl

[24] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[25] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[26] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR