On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin--Voigt friction
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 23-34
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider an operator function being a symbol of the abstract integro-differential equation
describing the oscillations of a viscoelastic tube. The operator-function spectra localization
is determined in the paper and its resolvent norm is estimated in a domain free of spectral points.
@article{VMUMM_2022_2_a2,
author = {Yu. A. Tikhonov},
title = {On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with {Kelvin--Voigt} friction},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--34},
publisher = {mathdoc},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a2/}
}
TY - JOUR AU - Yu. A. Tikhonov TI - On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin--Voigt friction JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 23 EP - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a2/ LA - ru ID - VMUMM_2022_2_a2 ER -
%0 Journal Article %A Yu. A. Tikhonov %T On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin--Voigt friction %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2022 %P 23-34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a2/ %G ru %F VMUMM_2022_2_a2
Yu. A. Tikhonov. On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin--Voigt friction. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 23-34. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a2/