Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 76-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider atomic formulas constructed from the binary predicate symbol $\subseteq$ and binary function symbols $\backslash$, $/$, $\cup$, and $\cap$. For $X$ and $Y$ from the powerset of a free semigroup, $X/Y$ denotes the set consisting of elements whose product with any element of $Y$ ( multiplying on the right) belongs to $X$. Similarly, one defines $Y \backslash X$ (multiplying on the left). We prove that every atomic formula that is true in every free semigroup powerset interpretation is also true in every free monoid powerset interpretation.
@article{VMUMM_2022_2_a12,
     author = {B. O. Konstantinovskiy and F. D. Kholodilov},
     title = {Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {76--79},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a12/}
}
TY  - JOUR
AU  - B. O. Konstantinovskiy
AU  - F. D. Kholodilov
TI  - Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 76
EP  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a12/
LA  - ru
ID  - VMUMM_2022_2_a12
ER  - 
%0 Journal Article
%A B. O. Konstantinovskiy
%A F. D. Kholodilov
%T Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 76-79
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a12/
%G ru
%F VMUMM_2022_2_a12
B. O. Konstantinovskiy; F. D. Kholodilov. Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 76-79. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a12/

[1] Lambek J., “The mathematics of sentence structure”, Amer. Math. Monthly, 65:3 (1958), 154–170 | DOI | MR | Zbl

[2] Buszkowski W., “Completeness results for Lambek syntactic calculus”, Z. math. Log. und Grundl. der Math., 32 (1986), 13–28 | DOI | MR | Zbl

[3] Pentus M., “Free monoid completeness of the Lambek calculus allowing empty premises”, Logic Colloquium '96, eds. J. M. Larrazabal, D. Lascar, G. Mints, Springer, Berlin–Heidelberg, 1998, 171–209 | DOI | MR | Zbl

[4] Ono H., Komori Y., “Logics without contraction rule”, J. Symb. Log., 50:1 (1985), 169–201 | DOI | MR | Zbl

[5] Kanovich M., Kuznetsov S., Scedrov A., “L-models and R-models for the Lambek calculus with additives and the multiplicative unit”, Logic, Language, Information, and Computation, WoLLIC 2019, Lect. Notes Comput. Sci., 11541, eds. R. Iemhoff, M. Moortgat, R. de Queiroz, Springer, Berlin–Heidelberg, 2019, 373–391 | DOI | MR | Zbl