@article{VMUMM_2022_2_a12,
author = {B. O. Konstantinovskiy and F. D. Kholodilov},
title = {Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {76--79},
year = {2022},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a12/}
}
TY - JOUR AU - B. O. Konstantinovskiy AU - F. D. Kholodilov TI - Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 76 EP - 79 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a12/ LA - ru ID - VMUMM_2022_2_a12 ER -
%0 Journal Article %A B. O. Konstantinovskiy %A F. D. Kholodilov %T Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2022 %P 76-79 %N 2 %U http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a12/ %G ru %F VMUMM_2022_2_a12
B. O. Konstantinovskiy; F. D. Kholodilov. Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2022), pp. 76-79. http://geodesic.mathdoc.fr/item/VMUMM_2022_2_a12/
[1] Lambek J., “The mathematics of sentence structure”, Amer. Math. Monthly, 65:3 (1958), 154–170 | DOI | MR | Zbl
[2] Buszkowski W., “Completeness results for Lambek syntactic calculus”, Z. math. Log. und Grundl. der Math., 32 (1986), 13–28 | DOI | MR | Zbl
[3] Pentus M., “Free monoid completeness of the Lambek calculus allowing empty premises”, Logic Colloquium '96, eds. J. M. Larrazabal, D. Lascar, G. Mints, Springer, Berlin–Heidelberg, 1998, 171–209 | DOI | MR | Zbl
[4] Ono H., Komori Y., “Logics without contraction rule”, J. Symb. Log., 50:1 (1985), 169–201 | DOI | MR | Zbl
[5] Kanovich M., Kuznetsov S., Scedrov A., “L-models and R-models for the Lambek calculus with additives and the multiplicative unit”, Logic, Language, Information, and Computation, WoLLIC 2019, Lect. Notes Comput. Sci., 11541, eds. R. Iemhoff, M. Moortgat, R. de Queiroz, Springer, Berlin–Heidelberg, 2019, 373–391 | DOI | MR | Zbl